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Introduction
Atopic dermatitis (AD) is a common chronic inflammatory 
skin disease characterised by dry skin and eczema-like 
lesions, accompanied by persistent itching.

The disease has a prolonged waxing and waning course which 
can potentially have a severe impact on patients’ quality of 
life.1 Admittedly, the pathophysiology of AD is very varied 
and complicated involving systemic immune dysfunction 
driven by T helper cells 2 (Th2 cells) and keratinocyte (KC) 
dysfunction. The mechanisms of AD are unclear and it is 
believed to be a multifactorial genetic disease induced by 
epithelial barrier dysfunction, abnormal innate and adaptive 
immune responses, S. aureus colonisation, intestinal and 
cutaneous microbial dysbiosis, etc.2 These mechanisms are 
mutually interlinked and create a vicious cycle eventually. 
More and more evidence indicates that modern lifestyles3,4 
(i.e., excessive hygiene, western diet) and other environmental 
factors5,6 such as pollution and passive smoking also regulate 

susceptibility to AD. However, we still have a limited 
understanding of the potential mechanisms of the increased 
morbidity of AD mediated by environmental exposures. In 
this scenario, epigenetics provides a novel explanation for 
gene-environment interactions.

Epigenetics refers to functionally relevant changes in a 
chromosome without alterations in the DNA sequence, 
which has an important contribution to phenotypic plasticity. 
It mainly encompasses CpG island DNA methylation, 
histone modification and non-coding RNA-mediated 
regulation. Epigenetic events often have their own 
unique autogenetic trigger which is susceptible to various 
environmental factors.7 Epigenetic modifications influence 
various biological processes, especially cell proliferation 
and differentiation. Therefore, increasing evidence suggests 
that abnormal epigenetic modifications contribute to the 
pathophysiology of AD.8,9 For example, both recombinant 
keratin 6A (KRT6A) and KRT6B were overexpressed in 
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AD lesions, which was related to the reduction of single 
CpG methylation in KRT6A. Further research demonstrated 
that miR-143 inhibited IL-13-induced downregulation of 
epidermal barrier-related proteins (filaggrin, loricrin, etc.) 
and inflammation by targeting IL-13 receptors.10

This review focuses on the contribution of epigenetic 
modifications to the pathogenesis of AD and makes 
recommendations for the treatment of AD by targeting 
epigenetic changes in the future.

Epigenetic modifications in the pathogenesis of AD
Effects of epigenetics on skin barrier
Epigenetic modifications in epidermal differentiation 
and formation
Epidermal lineages are derived from the ectoderm. During 
epidermal differentiation, the basal layer keratinocytes 
migrate upwards forming the spinous, granular and cornified 
differentiated layers. Normally structures and components 
of the epidermis maintain their integrities, including keratin, 
filaggrin (FLG), intercellular connection, keratinised 
envelope, lipid and calcium concentration, etc. Increasing 
evidence demonstrates that epigenetic modifications, 
including DNA methylation, histone modification and 
non-coding-RNAs, moderate epidermal formation and 
homeostasis.

Epigenetic programming and reprogramming seem to 
maintain pluripotency in early embryos and embryonic 
stem cells (ESCs) and DNA methylation confers epigenetic 
silencing of gene expression in ESCs.11 The major DNA 
methyltransferases (DNMTs) in mammals include DNMT1, 
DNMT3A and DNMT3B that establish and maintain DNA 
methylation patterns. DNMT1 is expressed in epidermal 
progenitor-containing cell populations to suppress 
differentiation and maintain basal cell proliferation.12 
Many promoters of the differentiation-associated genes 
are hypermethylated and thus become suppressed during 
stratum corneum (SC) self-renewal.12 DNA methylation is 
also correlated with gene activation. DNMT3A/B was shown 

to bind to the active enhancers in an H3K36me3-dependent 
manner during human epidermal SCs differentiation.13 
Specifically, DNMT3A associates with p63 to maintain high 
levels of DNA hydroxymethylation at the centre of enhancers 
in a Tet2-dependent manner.13 Whereas DNMT3B promotes 
DNA methylation along the body of the enhancer.13 In 
addition, DNMT3A/B is dispensable for murine epidermal 
development and homeostasis.14 Collectively, DNA 
methylation controls the proliferation and differentiation of 
the epidermis effectively [Table 1].

Mammalian polycomb group (PcG) proteins play central 
roles in maintaining stem cell pluripotency and regulating 
lineage-specific differentiation. Drosophila PcG proteins 
function within three major multimeric complexes: polycomb 
repressive complex 1 (PRC1), PRC2 and pleiohomeotic 
(Pho) repressive complex (PhoRC). In particular, a PRC1-
associated protein CBX4 maintains human epidermal SCs in a 
slow-cycling and undifferentiated state.16 Luis et al. suggested 
that decreased keratinocyte proliferation and increased 
premature differentiation attribute to Cbx4 deletion in mouse 
epidermis.15 Moreover, mutant Cbx4 increased Cdkn2a/p16 
transcripts which induced hyperproliferation and increased 
senescence in human keratinocytes.15 Also, transplantation 
of Cbx4-depleted keratinocytes failed to restore integral 
epithelium in mouse, indicating its significance in maintaining 
epidermal SCs.15 Three core subunits make up the catalytic 
core of PRC2—the SET domain containing EZH2, the 
zinc-finger containing SUZ12 and the WD40 repeat protein 
EED-which catalyses trimethylation on H3K27.17 EZH2 
methylation of H3K27me3 prevented premature recruitment 
of AP1 transcriptional activator to the structural genes that 
are required for epidermal differentiation, and Ezh2 knock-
out mouse showed premature differentiated skin layer in 
embryos.18 While basal cells differentiate, AP1 activates 
differentiation-specific genes as Ezh2 expression is lost.19 
Altogether, these studies suggest that PRC components and 
H3K27me3 levels may influence skin SCs activation and 
maintenance. H3K4me3 is involved in gene activation which 
is mediated by the trithorax group (TrxG) component with 

Table 1:  Effects of DNA methylation and histone proteins modifications on skin barrier in AD

Process Epigenetic modification Action mechanism Reference
Epidermal differentiation DNA methylation DNMT1 suppressed differentiation and maintained basal cell proliferation 12

DNMT3A/B was bind to H3K36me3-dependent manner during SCs differentiation 13
PRC1-associated protein CBX4 maintained human epidermal balance 15

Histone proteins 
modifications

EZH2 methylation of H3K27me3 prevented premature recruitment of AP1 
transcriptional activator

18

Mll2 and its binding partner WDR5 regulated expression of differentiation-
associated genes in human skin

21

5AC and NaB promoted histone hyperacetylation to induce terminal differentiation 
through increasing expression of Sprr1/2 and involucrin in human keratinocytes

23

Epidermal dysfunction DNA methylation Excessive methylation of FLG may increase risk of AD 44
Histone proteins 
modifications

HDAC activation was associated with epithelial barrier dysfunction 45

DNMT: DNA methyltransferase, SCs: stratum corneums, PRC1: polycomb repressive complex 1, 5AC: 5-azacytidine, NaB: sodium butyrate, FLG: filaggrin,  
AD: atopic dermatitis, HDAC: histone deacetylase
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a histone H3 lysine 4 (H3K4) methyltransferase activity.20 
Particularly, the member Mll2 and its binding partner WDR5 
are predominantly expressed in the differentiated cells 
and regulate the expression of differentiation-associated  
genes in human skin.21 Knockdown of Mll2 in human 
keratinocytes showed downregulation of differentiation-
related genes as well.21 Therefore, H3K4 methylation is 
essential for keratinocyte-specific gene regulation. Moreover, 
Histone acetylation also participates in skin development. In 
vitro using HDAC inhibitor led foreskin tissue to abnormal 
epiderma structure, proliferation stagnate, and premature 
terminal differentiation.22 5-azacytidine (5AC) and sodium 
butyrate (NaB) promote histone hyperacetylation, which 
induces terminal differentiation through increased expression 
of Sprr1/2 and involucrin in human keratinocytes23 [Table 1].

Non-coding RNA (ncRNA) is a kind of RNA transcript 
without the function of coding protein, including microRNA, 
lncRNA, circRNA and so on. They are involved in many 
biological processes, such as cell proliferation, differentiation, 
apoptosis and immune response. Calcium gradients, 
transcriptional factors p63 and Notch are all involved in 
the regulation of epidermal keratinocyte differentiation 
and  proliferation.24,25 Many studies reveal that multiple 
miRNAs are associated with this process via extracellular 
calcium. MiR-203, the first and the most upregulated 
miRNA implicated in epidermal differentiation, regulates 
calcium-induced keratinocyte differentiation by activation of 
the protein kinase C (PKC) and activator protein 1 (AP-1) 
pathway.26 Snail family transcriptional repressor 2 (SNAI2) 
and ΔNp63 are the targets of this process. MiR-203 inhibits 

p63 expression, which regulates keratinocyte proliferation and 
differentiation by galectin-7, resulting in upregulating the c-Jun 
N-terminal kinase (JNK).27 MiR-23b and the transforming 
growth factor-β (TGF-β)/SMAD signalling have a decisive 
function in regulating human epidermal differentiation.28,29 In 
addition, microRNA-23b-3p regulates human keratinocyte 
differentiation through repression of its direct target 
TGIF1 and activation of the TGF-β-SMAD2 signalling 
pathway.30 Extracellular Ca2+ increases miR-184 expression 
in primary epidermal keratinocytes and the upregulated 
miR-184 facilitates keratinocyte differentiation with 
increased involucrin expression via upregulation of cyclin 
E and p21 cyclin-dependent kinase inhibitors.31 Also, 
miR-184 promotes keratinocyte differentiation by enhancing 
the Notch pathway and targeting K15 and factor-inhibiting 
hypoxia-inducible factor 1 (FIH1).32 By contrast, p63 targets 
miRNAs via directly binding to miR-34a and miR-34c 
regulatory regions and repressing their activity.33 Moreover, 
overexpression of miR-34a could downregulate the 
sirtuin family member SIRT6 to stimulate keratinocyte 
differentiation34 [Table 2].

Downregulation of miR-339-5p increases levels of 
distal-less homeobox5 (DLX5), leading to involucrin 
upregulation via activation of the Wnt/β-catenin signalling 
pathway.35 Suppression of EGFR signalling facilitates terminal 
differentiation of keratinocytes. In addition, upregulation of 
miR-146a represses its target epidermal growth factor receptor 
(EGFR), thereby inhibiting keratinocyte proliferation.36 The 
interaction between H19 lncRNA and miR-130b-3p regulates 
desmoglein 1 expression. Specifically, H19 inhibits 

Table 2:  Effects of ncRNAs on skin barrier in AD

Process Epigenetic modification Target molecule Action mechanism Reference
Epidermal differentiation miR-203 SNAI2 and ΔNp63 Activate PKC and AP-1 pathway 26

P63 Upregulated of JNK by galectin-7 27
miR-23b-3p TGIF1 Interference in TGF-ß-SMAD2 signalling pathway 30
miR-184 Upregulated cyclin E and p21 cyclin-dependent 

kinase inhibitors
31

K15 and FIH1 Enhanced the Notch pathway 32
miR-34a Downregulated the sirtuin family member SIRT6 34

miR-339-5p Activation of the Wnt/β-catenin signalling 
pathway

35

miR-146a EGFR Inhibited keratinocyte proliferation 36
H19 lncRNA miR-130b-3p Increased the expression of desmoglein 1 37

Epidermal dysfunction miR-155-5p PKIα Inhibited expressions of tight junction proteins 47
miR-335 Suppressed SOX6 expression 48

let-7a-5p RRM2 and CCR7 Barrier abnormalities 49
miR-26a-5p HAS3,DEPDC1B, 

DEPDC1,NAMPT, 
DENND1B  
and ADAM19

49

miR-10a-5p HAS3 50
SNAI2: snail family transcriptional repressor 2, PKC: protein kinase C, AP-1: activator protein 1, JNK: c-Jun N-terminal kinase, FIH1: factor-inhibiting hypoxia-
inducible factor 1, EGFR: epidermal growth factor receptor, RRM2: ribonucleotide reductase regulatory subunit M2, CCR7: C-C motif chemokine receptor 7,  
HAS3: hyaluronan synthase 3, DEPDC: DEP domain-containing, NAMPT: nicotinamide phosphoribosyl transferase, DENND1B: DENN domain-containing 1B, 
ADAM19: a disintegrin and metalloproteinase domain 19
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in cancer cell proliferation.49 Downregulated miR-26a-5p 
was also involved in the barrier function of patients 
with atopic dermatitis by targeting hyaluronan synthase 
3 (HAS3), DEP domain-containing 1B (DEPDC1B), 
DEPDC1, nicotinamide phosphoribosyl transferase 
(NAMPT), DENN domain-containing 1B (DENND1B) and 
a disintegrin and metalloproteinase domain 19 (ADAM19), 
which mediated cell differentiation, cell proliferation and 
anti-apoptosis.49 HAS3 is one of the targets identified 
in downregulated miR-26a-5p.49 It is a direct target of 
upregulated miR-10a-5p in atopic dermatitis50 [Table 2].

Effects of epigenetics on immune dysfunction
Innate and adaptive immune systems are the main role 
players in the pathogenesis of AD. Innate immunity is the 
primary defensive barrier against pathogen infection, and 
adaptive immunity is critical in AD. Based on the adaptive 
inflammatory cascade reaction in AD, it has been described 
as a biphasic T cell disease. In the acute phase of AD, KCs are 
stimulated to release TSLP and other alarm proteins (such as 
IL-25 and IL-33). These proteins act on the ILCs to amplify 
Th2 response by inducing the transformation of immature T 
cells to Th2 cells, which promotes the production of cytokines 
that are related to Th2 (e.g., IL-4, IL-5, IL-13 and IL-31) and 
Th22 (e.g., IL-22 and S100A protein). The risk of developing 
allergy is influenced by early life events and particularly in 
utero exposures.51 In recent years, more and more articles 
reveal that epigenetic modifications also take place during 
pregnancy. Exposure to maternal smoking, BMI, DHA levels, 
vitamin D levels and folate supplementation have been shown 
to be associated with DNA methylation in cord blood.52 
Hanna et al. demonstrated that maternal atopy is associated 
with specific epigenetic signatures in offspring. They found 
that some top CpG sites were mapped to genes SCD, ITM2C, 
NT5C3A and NPEPL1.52 Both ITM2C and NT5C3A were 
related to the immune system. ITM2C was a target gene of 
a T cell-specific transcription factor called GATA-3. ITM2C 
deficiency weakened T helper cell-dependent immune 
responses,53 which could influence the future development 
of Th2 phenotypes such as allergy. NT5C3A encoded a 
protein that affected erythrocyte function; its expression 
was induced by IFN-γ and acted as an anti-inflammatory 
regulator via an epigenetic mechanism.54 Children with low 
Treg levels at birth might possess a higher risk of developing 
AD or of sensitisation to food allergens in the first year of 
life.55 Human β-defensin-1 (HBD-1) is expressed in various 
epithelial tissues, including the skin. Methylation frequencies 
at the CpG 3 and 4 sites within the HBD-1 promoter were 
significantly higher in AD lesional samples, which led to 
abundant S. aureus colonisation.56 Epigenetic phenomena 
always regulate immune cell differentiation in the mechanism 
of AD. A region within the RAD50 gene on chromosome 
5q31 controls Th2 differentiation, which is characterised by 
Rad50 DNase I hypersensitive sites (RHS). Polymorphism of 
rs2240032 in the RHS7 region affects the methylation of the 
Th2 cytokines promoter region and influences total serum IgE 

miR-130b-3p to increase the expression of desmoglein 
1 to induce keratinocyte differentiation.37 Interestingly, 
the link between desmosomal cadherin and the stability 
of β-catenin, which is negatively regulated by miR-214 as 
a direct target, suggested the role of miR-214 in epidermal 
barrier function.38 In the context of calcium-induced 
keratinocyte differentiation, oleic acid, an unsaturated 
free fatty acid constituent of sebum, has been shown to 
accelerate keratinocyte differentiation via upregulation 
of miR-203.39 Linoleic acid and ciglitazone also increase 
sebaceous lipogenesis via upregulation of miR-203 and 
miR-574-3p in the differentiation process.40 Additionally, 
circRNA is abundantly expressed in the process of epidermal 
stem cell differentiation.41 Thus, we speculate that circRNAs 
may maintain skin integrity in AD which requires further 
investigation [Table 2].

Epigenetic modifications in the epidermal destruction 
and repair in AD
In the pathogenesis of AD, both FLG mutations and 
immune-mediated filaggrin deficiency could cause irregular 
or deformed KCs and damage the barrier.42,43 Studies by 
Ziyab et al. have shown that the excessive methylation of this 
gene may occur in heterozygotic carriers of null mutations 
(R501X, 2282del4 and S3247X); the interplay between the 
sequence and epigenetic regulation results in the increased 
risk of the disease in the carriers. These studies indicated 
that the epigenetic mechanisms regulating the expression 
of the FLG gene in the pathogenesis of the disease should 
not be overlooked.44 The expression of tight junctions such 
as transmembrane proteins (claudin; connecting adhesion 
molecules) and the intracellular cytoplasmic proteins (zonula 
clauddens, Zo) was decreased in AD. Steelant et al. described 
a new pathway of epithelial barrier dysfunction that was 
associated with histone deacetylase (HDAC) activation, and 
the application of HDAC inhibitors was effective to rebuild 
the barrier integrity and reduce hyperresponsiveness in 
asthmatic mice45 [Table 1].

Sonkoly et  al. applied miRNA microarray to compare AD 
lesions with healthy controls and found miR-155 was one 
of the highest-ranked upregulated miRNAs in the patients’ 
group.46 Wang et  al. also observed this result, they 
found that miR-155-5p predominantly increased in 
AD epithelium and PKIα was its specific target gene, 
through this pathway, the expressions of tight junction 
proteins (such as CLDN16, CLDND1 and occludin) were 
inhibited.47 MiR-335 directly suppressed SOX6 expression 
to induce keratinocytes differentiation. In AD lesions, 
miR-335 expression was abnormally decreased whereas 
SOX6 was overexpressed to induce epidermal dysfunction, 
and miR-335 was epigenetically regulated by HDACs as 
well.48 In addition, the downregulation of let-7a-5p may be 
related to barrier abnormalities by targeting ribonucleotide 
reductase regulatory subunit M2 (RRM2) and C-C motif 
chemokine receptor 7 (CCR7), which are mainly involved 
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levels.57,58 Additionally, the overexpression of high-affinity 
IgE receptor (FCER1G) on monocytes and dendritic cells 
contributes to the pathogenesis of AD, as TSLP-activated 
pSTAT5 pathway regulates FCER1G demethylation on 
monocytes by recruiting DNA demethylase TET2.59 IFN-γ 
is strictly regulated during fetal development, its gene 
transcription has a relevance to the methylation status of a CpG 
dinucleotide contained within a TATA proximal regulatory 
element.60 A study nested in the prospective birth cohort 
ALADDIN (Assessment of Infant Lifestyle and Allergic 
Diseases) showed that placental histone hyperacetylation 
was associated with a low risk of food allergen sensitisation 
in children.61 They observed H3 acetylation in IFNG gene, 
H4 acetylation in HDAC4 and H3 acetylation in SH2B3.61 
H4 acetylation increased HDAC4 expression in the placenta; 
immune genes and transcription factors expression involved 
in Th1 tilting may be regulated by whole-genome deacetylase 
to improve early immune polarisation, which may help infants 
to prevent IgE sensitisation.61 Admittedly, ncRNAs also 
regulate immune function in AD. Th17 cell differentiation 
is controlled by retinoid-related orphan receptor gamma t  
(RORγt). DEAD-box protein 5 (DDX5) is identified as a co-
activator of RORγt, which is necessary for the transcription 
of Th17 genes involved in Th17-mediated autoimmune 
inflammation. Interestingly, lncRNA RMRP contributes 
to forming the DDX5-RORγt complex and recruiting this 
complex to DNA binding sites in Th17 cells.62 In addition, a 
study mentioned that miR-155, FOXP3 and RORγt may have 
indefinite relevance to each other to mediate immune disorders 
in AD.63 Tregs are best characterised by the expression of 
forkhead box transcription factor 3 (Foxp3), whose stable 
expression during Treg differentiation is regulated by several 
conserved non-coding sequence (CNS) elements. Owing to 
the unique catalysis by methylcytosine dioxygenase of the 
ten-eleven-translocation (Tet) family, CNS2 is completely 
demethylated to maintain Treg cell suppressor function.64 
Foxp3-TSDR hypermethylation of Tregs was observed in 
both allergic rhinitis and AD.55,65 The euchromatin histone 
methyltransferase-1 (Ehmt1) and Ehmt2 play a considerable 
role in the epigenetic events of euchromatin. They 
preferentially establish heterodimerisation to synthesise the 
critical methyltransferase and catalyse the monomethylation 
and demethylation of lysine on histone (h3k9me1/me2).66 
Treg cell differentiation relies on the epigenetic state of Foxp3-

TSDR, within which the Ehmt1 activity is a fundamental 
control mechanism. The transcription factor Wiz recruited 
Ehmt1 to Foxp3-TSDR elements to make a preference for 
methylation. Knocking out of Ehmt1 or Wiz by CRISPR/
Cas method led to the loss of H3K9me2 and enhancement 
of Foxp3 expression during iTreg differentiation67 [Figure 1 
and Table 3].

Effects of epigenetics on S. aureus colonisation
Research shows a high prevalence S. aureus colonisation 
in lesions of AD patients, and its abundance positively 
correlates with disease severity.68 The mechanisms of  
S. aureus colonisation in AD include enhancing skin 
adhesion, damaging epidermal barrier function and 
amplifying proinflammatory reactions. S. aureus produces 
various cell-wall proteins and secreted toxins that make it 
adhere to the human skin surface and destroy the skin barrier 
through physical, chemical and inflammatory mechanisms. 
Several adhesive molecules such as fibronectin-binding 
protein (fnBP), clumping factors A and B (ClfA and ClfB) 
and iron-regulated surface determinant A (IsdA) have been 
found. S. aureus alpha-toxin, an effective pore-forming 
cytotoxin, forms a heptameric beta-barrel pore in the cell 
membranes and corrodes epidermal integrity.69 Moreover, 
S. aureus produces a variety of proteases to accelerate SC 
dissolution, and the activity of these proteases would be 
enhanced when filaggrin decreases and typical Th2 cytokines 
exist.70 Also, S. aureus could irritate endogenous keratinocyte 
proteases (e.g., KLK6, KLK13 and KLK14) to create a mileu 
favouring epidermal destruction.71 In addition, S. aureus 

Figure 1: Wiz recruited Ehmt1 to Foxp3-TSDR elements to induce Tregs 
differentiation

Table 3:  Effects of DNA methylation and histone proteins modifications on immune dysfunction in AD

Process Epigenetic modification Action mechanism Reference
Immune dysfunction DNA methylation ITM2C deficiency weakened T helper cell-dependent immune responses 53

NT5C3A expression was induced by IFN-γ and acted as an anti-inflammatory 
regulator via an epigenetic mechanism

54

HBD-1 methylation in AD lesional samples led to abundant S. aureus 
colonisation

56

RHS7 region affected the methylation of the Th2 cytokines promoter region and 
influenced total serum IgE levels

57,58

Histone proteins modifications H4 acetylation in HDAC4 helped infants to prevent IgE sensitisation 61
HBD-1: human β-defensin-1, AD: atopic dermatitis, RHS7: Rad50 DNase I hypersensitive sites, HDAC4: histone deacetylase 4
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colonisation induces a series of proinflammatory cytokine 
production. Staphylococcal superantigens (SAgs), such as 
SEA, SEB, SEC and toxic shock syndrome toxin-1 (TSST-1), 
drive B-cell development and cytokine secretion. SAgs also 
induce the release of IL-31, which inhibits keratinocyte 
differentiation, down-regulates filaggrin expression and 
stimulates itch.72 Remarkably, Staphylococcal lipoproteins 
facilitated the expression of TSLP in keratinocytes 
through the toll-like receptor 2/6 (TLR-2/6) pathway to 
strengthen Th2 responses.73 S. aureus secretes several short 
amphiphilic peptides called phenol-soluble modulins (PSMs) 
which are directly acting pro-inflammatory factors with 
compartment-specific effects. PSMs initiate γδT-mediated 
inflammation driven by IL-36a in the epidermal compartment, 
whereas in the dermal compartment, they stimulate 
IL-1b-driven TH17 inflammation.74,75 In conclusion,  
S. aureus colonisation plays a critical role in the pathogenesis 
of AD. One study proposed that S. aureus infection probably 
induced histone post-translational modification, which led 
to an abnormal expression of important signalling pathways 
participating in the inflammatory response, immune 
monitoring and bacterial elimination.76 However, the 
available literature is limited; epigenetic changes caused by 
S. aureus colonisation are in need of further investigation.

Epigenetics in skin and intestinal dysbiosis
Variations in cutaneous and intestinal microbiota contribute 
to the pathogenesis of AD. The “gut-immune-skin axis” 
considers that both skin and intestinal microecosystems 
have a significant influence on developing the immune 
system and forming immune tolerance in early life, and these 
microecosystems may affect each other through immune 
responses. For infants, the activation of TLRs increases 
IL-6 and IL-23 levels and decreases tumour necrosis 
factor (TNF) -α or IL-1 levels. This reaction facilitated the 
body’s immune tolerance to self or foreign antigens and 
weakened the skin response to microorganisms, which was 
relatively obvious for older children and adults. Furthermore, 
several critical microbes enhanced inflammatory 
reactions. For instance, the epidermal T cells produced 
IL-17 A and IFN-γ after Staphylococcus epidermidis 
antigen stimulation.77 In particular, the immune responses of 
Th17 cells could be extensively triggered by skin-colonising 
microbiota.78

On the other hand, abundant evidence supports the role of 
intestinal microbes in the pathogenesis of AD mediated by 
immunologic, metabolic and neuroendocrine pathways. 
The specific composition of early intestinal microbiomes 
regulates the host’s immune maturation. Although S. aureus 
colonisation in the skin is positively related to the severity 
of AD, a birth cohort study showed that AD was negatively 
correlated with intestinal colonisation of S. aureus strains 
carrying superantigens and adhesion genes into infancy. So 
it is speculated that intestinal colonisation by this particular 
bacterium provides protection by promoting immune 

system development.79 Feedback interactions between 
Faecalibacterium prausnitzii imbalance and intestinal 
epithelial inflammation lead to increasing gut epithelial 
permeability and abnormal Th2-type immune responses in 
the skin ultimately.80 Additionally, the intestinal microbiome 
affects the immune system through its metabolites as well. A 
higher proportion of gut microbiota in AD patients produces 
short-chain fatty acids (SCFAs), whose products include 
butyrate, propionate and acetate, all of which interact with 
the gut epithelium barrier and execute anti-inflammatory and 
immune-modulatory effects.80 Moreover, supplementation 
of linoleic acid and 10-hydroxy-cis-12-octadecenoic 
acid could alleviate AD symptoms and help recover the 
gut microecosystem balance.81 Interestingly, multiple 
neurotransmitters and neuromodulators are also involved in 
the intestinal microbiological composition, which includes 
tryptophan, γ-aminobutyric acid and serotonin, all of which 
are associated with AD severity, skin barrier disturbance and 
immune system disorders.82,83

Therefore, both the skin and intestinal microbiome experience 
a non-negligible variation in AD patients. The diversity of 
microbiota is decreased, and the amount of Streptococcus, 
Corynebacterium, Keratinella and Proteobacteria are 
generally reduced, while the abundance of S. aureus in the 
skin is prominently increased.84 The microbial diversity of 
the skin is restored after treatment. Compared with healthy 
persons, AD patients were observed to have higher levels 
of Clostridia, Clostridium difficile, Escherichia coli and  
S. aureus and lower levels of Bifidobacteria, Bacteroidetes 
and Bacteroides in the gut.85 In particular, the abundance 
of butyric-producing bacteria (e.g., Coprococcuseutactus) 
in slight-mild AD or healthy infants was higher than that in 
severe AD. It remains uncertain, however, whether or not 
abnormal changes in skin and intestinal microbes are the 
primary results of the destruction of the epidermal barrier and 
the bias of Th2-type immune responses. Although research 
on skin and intestinal microecology variation in AD has been 
gradually expanding, there is still a little acquaintance with 
the epigenetic changes caused by microecology. Butyric acid 
is a metabolite of SCFs in S. epidermidis. BA-NH-NH-BA, 
a derivative of butyric acid, could induce the acetylation 
at lysine 9 of H3 (AcH3K9) in keratinocytes to serve as 
an HDAC inhibitor and could increase IL-6 production to 
reduce S. aureus colonisation prominently.86 Conversely, 
environmental factors may damage the epidermal barrier, 
cause immune disorders and participate in proinflammatory 
responses induced by S.aureus infection through histone 
modification, which has become established a non-negligible 
mechanism of AD. Interestingly, Ansari et al. discovered that 
the intestinal epithelium exposed to commensal microbiota 
induced localised TET2/3-dependent DNA methylation 
changes at regulatory elements, and this microbiota-induced 
epigenetic programming was necessary for proper intestinal 
homeostasis in vivo.87 The chances are that we can focus on 
the mechanism of this process thoroughly in the future.
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Others
There are also some other mechanisms in AD, including vitamin 
D deficiency, histamine H4 receptor function and cell death. 
Research indicates that the average level of 1,25-(OH)2-VitD3  
in AD patients is significantly reduced, and the severity of 
the disease is dose-dependent.88 Furthermore, 1-hydroxylase 
and 2,4-hydroxylase of vitamin D are under epigenetic 
control.89,90 Distinct methylation levels of CYP2R1 and 
CYP24A1 were detected between vitamin D deficient groups 
and sufficient controls.91 Histamine H4 receptor(H4R) is 
the latest hotspot in the histamine receptor family and its 
antagonist was able to alleviate patients’ eczematoid lesions, 
itch and inflammatory reactions, which provide a creative 
therapeutic target of AD.92,93 MiR-223 was increased in AD, 
it may up-regulate histamine-N-methyltransferase (HNMT) 
expression indirectly to degrade the excessive histamine 
involved in the pathogenesis of AD.94 Keratinocytes in AD 
patients showed increased IFN-γ-mediated apoptosis, and 
apoptosis-related genes NOD2, DUSP1 and ADM were all 
induced by the IFN-γ program.95 Remarkably, miR-29b 
was significantly upregulated and directly targeted the 
BCL2L2 gene to promote IFN-γ-induced keratinocyte 
apoptosis.96 So, all of the above processes are regulated by 
epigenetics in AD [Table 4].

Conclusion
Pathogenetically, AD has multiple pathways of clinical 
evolution, including the destruction of the epidermal barrier, 
activation of multifarious T cell subsets and commensal 
bacteria dysbiosis. Indeed, it has been well proven that 
environmental factors and diets mediate the pathogenesis of 
allergic diseases, such as asthma, allergic rhinitis, AD and 
food allergy through epigenetic mechanisms. In the current 
treatments of AD, drugs such as antihistamines, corticosteroids, 
leukotriene modifiers, anti-IgE agents, anticholinergics  
and beta-agonists have been proven capable of effectively 
controlling allergic symptoms, but AD recurrence is still 
a worldwide problem.97 Fortunately, several methods 
targeting epigenetic modifications have been therapeutically 
validated in treating AD. For instance, anti-miR-155-5p and 
anti-miR-126 down-regulated inflammatory cytokines and 
inhibited airway hyperresponsiveness in airway allergic 
diseases.98,99 Liew et  al. demonstrated that belinostat, the 
inhibitor of histone deacetylase, restored miR-335 expression 
and rescued the defective skin barrier in AD by targeting the 
dysregulated miR-335/SOX6 axis.48 Trichostatin A (TSA) 
prevented CD4+ T cells from producing IL-4 cytokine to alleviate 
symptoms in AD mouse models.100 And JNJ-26481585 restored 
nasal mucosa function by promoting tight junction components 

expression.45 However, a thorough understanding of the 
epigenetic modifications may provide the base for new 
molecular classifications of the disease and the development 
of personalised therapies, which requires our further efforts.
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