Comparison of effectiveness of interventions in reducing mortality in patients of toxic epidermal necrolysis: A network meta-analysis

Tejas K. Patel, Parvati B. Patel¹, Sejal Thakkar²

Department of Pharmacology, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, ¹Department of Pharmacology, GMERS Medical College, Gotri ²Department of Dermatology, GMERS Medical College and Hospital, Gotri, Vadodara, Gujarat, India

Abstract

Background: Limited evidence is available about effectiveness and choice of immunomodulating treatment modalities for toxic epidermal necrolysis (TEN).

Aims: To compare the effectiveness of interventions to reduce mortality in patients of toxic epidermal necrolysis through network metaanalysis.

Methods: Studies were retrieved using PubMed, Google Scholar and Cochrane Database of Systematic Reviews from inception to September 18, 2018. Only English language articles were considered. Observational and randomized controlled studies having \geq 5 TEN patients in each intervention arm were included. Two investigators independently extracted study characteristics, intervention details and mortality data. Bayesian network meta-analysis was performed using the Markov chain Monte Carlo (MCMC) approach through the random effect model. The ranking analysis was done to provide a hierarchy of interventions. The consistency between direct and indirect evidence was assessed through node spit analysis. The primary outcome was to compare the mortality [Odds ratio OR (95% credibility interval Crl)] among all treatment modalities of TEN.

Results: Twenty-four studies satisfying the selection criteria were included. The network analysis showed improved survival with cyclosporine as compared to supportive care [OR- 0.19 (95% Crl: 0.05, 0.59)] and intravenous immunoglobulin [OR- 0.21 (95% Crl: 0.05, 0.76)]. The hierarchy of treatments based on "surface under the cumulative ranking curves" (SUCRA) value were cyclosporine (0.93), steroid+intravenous immunoglobulin (0.76), etanercept (0.59), steroids (0.46), intravenous immunoglobulin (0.40), supportive care (0.34) and thalidomide (0.02). No inconsistencies between direct and indirect estimates were observed for any of the treatment pairs.

Limitations: Evidence is mainly based on retrospective studies.

Conclusion: The use of cyclosporine can reduce mortality in TEN patients. Other promising immunomodulators could be steroid+intravenous immunoglobulin combination and etanercept.

Key words: Cyclosporine, immunologic factors, mortality, Stevens–Johnson syndrome

Plain language summary

Toxic epidermal necrolysis is a type of severe skin reaction most commonly caused by drugs. It affects almost 1 to 2 million people per year. It is considered an emergency and causes death in 15%–30% of the affected patients. There are no proven effective medications against it. The patients are managed symptomatically in intensive care units. The authors have conducted "network meta-analysis" to find out which is the most effective medication against this skin reaction.

How to cite this article: Patel TK, Patel PB, Thakkar S. Comparison of effectiveness of interventions in reducing mortality in patients of toxic epidermal necrolysis: A network meta-analysis. Indian J Dermatol Venereol Leprol 2021;87:628-44.

Corresponding author: Dr. Tejas K. Patel, Department of Pharmacology, All India Institute of Medical Sciences, Gorakhpur 273 008, Uttar Pradesh, India. dr.tkp2006@yahoo.co.in

Received: July, 2019 Accepted: November, 2020 EPub Ahead of Print: April, 2021 Published: August, 2021

DOI: 10.25259/IJDVL_605_19 PMID: 33871208

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

The "network meta-analysis" is a statistical tool to compare data of multiple medications simultaneously from the already published literature. It also provides hierarchies among the medications and identifies the best possible medications against the disease or condition being studied. A total of 24 published studies were analyzed and five medications were compared with each other. The medications were corticosteroid, intravenous immunoglobulin, combination of steroid+intravenous immunoglobulin, etanercept and cyclosporine. The authors found that use of cyclosporine can reduce death due to toxic epidermal necrolysis. The other effective medications could be combination of steroid+intravenous immunoglobulin and etanercept.

Introduction

Stevens–Johnson syndrome (SJS) is considered to be a rare and serious cutaneous reaction. The main causative factor is drugs. It is classified into three categories based on the percentage of body surface area involvement: SJS (<10%), toxic epidermal necrolysis – TEN (>30%) and SJS-TEN overlap (10%–30%).¹ They are associated with high morbidity and mortality. An earlier systematic review suggests that TEN is associated with significantly higher mortality than SJS [odd ratio- OR: 7.2 (95% CI: 1.6–31.9)].² The reported mortality rate of SJS, SJS-TEN overlap and TEN varies from 1.9 to 4.8, 5.3 to 19.4 and 14.3 to 28.2, respectively.²⁻⁴

Earlier systematic reviews did not suggest significant survival benefit of steroids,^{5,6} intravenous immunoglobulin^{5,7,8} and combination of steroid+intravenous immunoglobulin in SJS/TEN patients.⁹ A recent individual patient-level meta-analysis suggests steroids and cyclosporine are two most promising immunomodulating treatment options for SJS/ TEN patients.¹⁰ Two more recent meta-analyses observed cyclosporine therapy can reduce the risk of mortality in SJS/ TEN patients.^{11,12} All these earlier meta-analyses had limited direct head to head comparison of treatment modalities.

Unlike traditional meta-analyses, network meta-analysis provides a comparative treatment effectiveness through analysis of both direct and indirect evidence. It also provides hierarchies among the treatment modalities and offers a comprehensive framework for decision-making.¹³

In this study, we focused on TEN cases with body surface area > 10%. SJS usually have lower mortality than TEN.¹⁻⁴ We anticipated the inclusion of observational studies. The differences in the number of patients of SJS or TEN in different treatment arms could have affected direct/indirect comparisons and ranking analysis. We conducted the network meta-analysis to compare the effectiveness of interventions to reduce mortality in patients of TEN.

Methods

Information sources and search strategy

Two investigators (TKP and PBP) independently searched the PubMed, Google Scholar and Cochrane Database of Systematic Reviews. We also searched the bibliographies of relevant articles and systematic reviews. There was no restriction on time period to be considered. The search strategy of PubMed and Google Scholar were: (Stevens-Johnson syndrome OR Toxic epidermal necrolysis OR Lyell's syndrome) AND (Treatment OR Management OR Supportive care OR Palliative care OR Corticosteroid OR Immunoglobulin OR Cyclosporine). We included English language articles only. The last search was carried out on September 9, 2018 on PubMed and September 18, 2018 on Google Scholar. The study protocol was prospectively registered on PROSPERO register (CRD42018092567).

Case definition of TEN

SJS/TEN overlap and TEN were considered as TEN as defined by Bastuji-Garin *et al.* (body surface area involvement – body surface area >10%).¹ In case of absence of apparent classification in the study, raw data of body surface area was used to categorize patients into TEN.

Selection criteria

Inclusion criteria

- Observational and randomized controlled studies of any age group assessing the effectiveness of two interventions for reducing mortality in TEN patients. The intervention can be supportive care or any treatment modality
- Studies should have \geq 5 TEN patients in each intervention arm.

Exclusion criteria

- Studies not differentiating SJS from TEN or not providing the raw data of body surface area involvement to categorize TEN
- SJS/TEN studies not focusing on mortality as an outcome
- Non-comparative studies
- Duplicate studies (In case of duplicate reports, studies with most comprehensive, up-to-date and largest dataset was included)
- Review articles, editorials, non-research letters, discussion papers.

Study screening and selection strategy

Two investigators (TKP and PBP) independently initially assessed title, abstract and then, if potentially relevant, retrieved full text as per selection criteria. All full-text articles were initially screened for differentiation between SJS and TEN based on body surface area, treatment arms, number of included patients in each arm and mortality data. A predefined Excel sheet was used to record the reason of each excluded study. The disagreements in study selection were resolved through discussion, consensus and consultation with third investigator (ST).

Data extraction process

The following data were collected from the included studies in a predefined Excel sheet:

- General study characteristics: first author, publication year, types of publication, country, data collection period, study duration, study design, age group studied, admission ward, diagnosis of TEN
- Intervention characteristics: Dose, route, duration of each treatment modality studied; basis of assigning treatment; mean or median age, body surface area and SCORTEN score involvement and delay of stating treatment in each treatment arms; observed and expected mortality
- Mortality data: treatment sample size and number of patients died in each treatment arm.

All extracted data were cross-checked to ensure accuracy.

Risk of bias (quality) assessment

The risk of bias was assessed using scoring tool designed by Zimmermann *et al.* for the SJS/TEN studies.¹⁰ It scores each study based on clear description of hypothesis, main outcomes, selection criteria, ineligible and those refuse to participate in the study, participants completing the treatment, distributions of the principal confounders (age, severity, country, year) and use of 95%-confidence interval (CI) and/ or actual probability values to report mortality. The range of total score is 0 to 13.17. The score below 5 was used as a cut off point to define high-risk studies.

Statistical analysis

The primary outcome was to compare the mortality among the all treatment modalities of TEN.

Initially, proportions of deaths were analyzed and expressed as Odds ratio (OR) and its 95% CI for each study. The direct pairwise meta-analysis of all interventions was performed using Mantel-Haenszel's method with random-effect models to evaluate statistical heterogeneity within each comparison. An I² test was used to evaluate the heterogeneity. An I² value of 25%, 50% and 75% was considered as low, medium and high heterogeneity, respectively.¹⁴

On completion of pairwise meta-analysis, Bayesian network meta-analysis was performed using the Markov chain Monte Carlo (MCMC) approach.^{15,16} The vague prior distribution was used to obtain the closest findings with frequentist method.¹⁷ The pooled OR and its corresponding 95% credibility interval (CrI) was obtained through random effect model for each treatment pair comparison. The treatment

modality was considered effective in reducing mortality, when the upper and lower 95% CrI for OR were less than 0 (equivalent to P < 0.05). Network diagram was plotted to depict the treatment modalities that directly compared with each other.

Ranking analysis was done to rank all interventions. Surface under the cumulative ranking curves (SUCRA), a numerical summary of the probabilities, was used to provide a hierarchy of interventions. SUCRA value 100% indicates a treatment is certain to be the best and 0% value suggests a treatment is certain to be the worst.¹⁸ Based on SUCRA, the league table was arranged to present the network metaanalysis summary estimates. The treatments were ranked in order of better to worst outcome from left to right in a league table.

The sensitivity analysis of network meta-analysis was performed by risk of bias assessment (excluding the highrisk studies), study design and study region (developed/ developing countries). A comparison-adjusted funnel plot was used to assess publication bias.

Assessment of inconsistency

Node splitting was used to assess consistency between direct and indirect evidence. The mean treatment effect estimates were calculated based on the direct and indirect evidence. The consistency of the estimates of treatment effects was examined to evaluate the discrepancy between direct and indirect comparisons.¹⁹

Statistical packages used

The direct pairwise meta-analysis was done through "Review manager software version 5.3." The network metaanalysis was performed using the Microsoft-Excel-based Network Meta-analysis tool - NetMetaXL version 1.6.1 (Cornerstone research group, Canada) and WinBUGS 1.4.3. software (MRC Biostatistics Unit, Cambridge Institute of Public Health, United Kingdom). The node split analysis was done through MetaInsight (binary) software version 1.1 (Complex review support unit, University of Glasgow, United Kingdom).

Results

Literature search

We assessed 273 full texts and included 24 articles fulfilling the selection criteria from the literature search [Figure 1].

Characteristics of the included studies

The detailed characteristics of all included studies are presented in Table 1.^{20.43} The study designs of included studies were retrospective (18), prospective (3), randomized controlled trial (2) and prospective-retrospective (1). Ten, twenty and thirty percent body surface area involvement was considered as TEN in 14, 2 and 8 studies, respectively. Twelve studies included all age group and 8 studies adults and elderly age group patients, while four studies did not

				Table 1: G	eneral charac	cteristics of all i	ncluded studies				
Study	Country	Data	Study	Study	TEN	Diagnosis of	Study age		Study population	_	Total
		collection period	design	specific department	definition - Percentage of BSA involvement	Z H	group	Age to range, mean ± SD* (years)	BSA to range, mean ± SD*, mean (95% CI)**, median (IQR)*** %	SCORTEN score to mean ± SD*, mean (95% CI)**	TEN sample
Brand and Rohr, 2000 ²⁰	Australia	1978–1998	Retrospective	ICU	>30	Clinical	Adults and elderly	23–73	MN	MN	12
Brown <i>et al.</i> , 2004 ²¹	USA	1997-2002	Retrospective	BU	>10	Clinical, biopsy	NM	$45 \pm 25^{*}$	$45.6 \pm 25^{*}$	NM	45
Chantaphakul <i>et al.</i> , 2015 ²²	Thailand	2009–2014	Retrospective	MN	>10	Clinical	Adults and elderly	20-85	MN	MN	19
Chen et al., 2010 ²³	China	1994-2009	Retrospective	NM	>30	Clinical, biopsy	All age	11 - 81	30.2*	NM	30
González-Herrada <i>et al.</i> , 2017 ²⁴	Spain	2001-2015	Prospective- retrospective	BU	>10	Clinical, biopsy	Adults and elderly	MN	MN	MN	32
Gravante <i>et al.</i> , 2007 ²⁵	Italy	1995–2005	Retrospective	BU	>10	Clinical, biopsy	All age	4–94	$62.8 \pm 32.8*$	MN	31
Hirapara <i>et al.</i> , 2017 ²⁶	India	2009–2012	Retrospective	MN	>10	Clinical	All age	6-78	38.4 (32.2–44.4)**	1.8 (1.5–2.0)**	36
Ioannides <i>et al.</i> , 1994 ²⁷	Greece	1972–1990	Retrospective	MN	>20	Clinical, biopsy	All age	2–84	$42.1 \pm 16.1^*$	MN	19
Jagadeesan <i>et al.</i> , 2013 ²⁸	India	2008–2012	Prospective	DW	>30	Clinical \pm biopsy	All age	6-68	51.6*	MN	36
Kaur et al., 1990 ²⁹	India	1982-1989	Prospective	DW	>20	Clinical, biopsy	All age	0.4-60	23*	NM	30
Kim <i>et al.</i> , 2005^{30}	South Korea	1990-2003	Retrospective	MN	>30	Clinical, biopsy	All age	2-80	$48.7 \pm 17.1^*$	NM	38
Lalosevic <i>et al.</i> , 2015 ³¹	Serbia	1993–2012	Retrospective	MM	>30	Clinical, biopsy	All age	1–94	$74.0 \pm 20.8^{*}$	MN	17
Lee <i>et al.</i> , 2017 ³²	Singapore	2011-2014	Retrospective	BU	>10	Clinical, biopsy	Adults and elderly	$57 \pm 20^*$	$29 \pm 25*$	NM	28
Mohanty <i>et al.</i> , 2017 ³³	India	2014-2015	Retrospective	DW	>10	Clinical	All age	$38.4 \pm 8.8^{*}$	34.9 ± 19.9	2.57 ± 1.1	22
Paquet et al., 200634	Belgium	NM	Prospective	MN	>30	Clinical, biopsy	Adults and elderly	18-78	59.0 ± 15.9	NM	11
Poizeau <i>et al.</i> , 2018 ³⁵	France	2005-2016	Retrospective	BU	>10	Clinical	NM	MN	MN	MN	174
Schneck <i>et al.</i> , 2008 ³⁶	Germany, France	1997–2001	Retrospective	MN	>10	Clinical \pm biopsy	NM	47 ± 25*	MN	MN	171
Shortt <i>et al.</i> , 2004 ³⁷	Canada	1995–2002	Retrospective	BU	>10	Clinical \pm biopsy	NM	NM	NM	NM	32
Stella <i>et al.</i> , 2007 ³⁸	Italy	1993–2005	Retrospective	BU	>10	Clinical, biopsy	Adults and elderly	27–81	$33.3 \pm 26.3^*$	NM	27
Wang <i>et al.</i> , 2018 ³⁹	Taiwan	2009–2015	RCT Open labeled	MN	>10	Clinical \pm biopsy	All age	6-87	$44.6 \pm 23.1^*$	MN	35
Wolkenstein <i>et al.</i> , 1998 ⁴⁰	France	1995–1996	RCT Double blind	BU, ICU	>10	Clinical, biopsy	Adults and elderly	23-81	MN	MN	22
Yang et al., 2009 ⁴¹	China	1993–2007	Retrospective	ICU	>10	Clinical, biopsy	All age	6—86	$41.0 \pm 12.5^*$	2.3 ± 1.0	47
Yeong et al., 2011 ⁴²	Taiwan	2000–2006	Retrospective	BU	>30	Clinical, biopsy	All age	11-89	66.2 ± 28.6	3.2 ± 1.4	16
Zhu et al., 2012 ⁴³	China	2000-2010	Retrospective	ICU	>30	Clinical, biopsy	Adults and elderly	18-91	90.3 ± 12.1	2.3 ± 1.2	55
ICU: Intensive care un SD: Standard deviation	it, BU: Burn uni	t, DW: Dermato	ology ward, RCT: I	Randomized con	trolled trial, NM:	Not mentioned, IQF	የ: Interquartile range, ገ	TEN: Toxic epider	mal necrolysis, SCOR	TEN: Score of TEN,	

Patel, et al.

Figure 1: PRISMA flow diagram showing study selection process

have a clear description of age group studied. Total sample size of included TEN patients varied from 11 to 174.

Intervention group characteristics

Total of 979 patients with TEN from 24 studies were assigned to 7 intervention groups. Total of 223 deaths were observed. The interventions used in included studies were supportive care (15), steroids (14), intravenous immunoglobulin (8), Steroid+intravenous immunoglobulin (7), Cyclosporine (4), Etanercept (1) and Thalidomide (1). Number of two-arm intervention studies were 23. One study assessed multiarm interventions.³⁶ Basis of allocation of the treatment was clearly described in 14 studies. Only 5 studies described the delay in start of treatment.^{21,25,32,35,36} In case of Shortt et al., intravenous immunoglobulin group of patients were admitted significantly earlier than those who received supportive care only.37 The studies that described or provided sufficient data to calculate the age group, body surface area and SCORTEN score distribution of intervention groups were 20, 19 and 9. respectively. In case of Hirapara *et al.*²⁶ and Lee *et al.*³² age group data were not comparable among the intervention groups. In case of Stella et al., patients in corticosteroid group had significantly higher body surface area involvement than steroid+intravenous immunoglobulin group patients. In case of Mohanty *et al.*, patients in supportive care group had higher SCORTEN score than cyclosporine group patients.³³ Five included studies did not differentiate the mortality data between SJS and TEN patients. The corresponding authors provided the mortality data on request through mail.^{24,32,33,35,36} Detailed characteristics of intervention groups are presented in Table 2.

Risk of bias assessment

Total 16 studies scored ≥ 5 in risk of bias assessment. As shown in risk of bias summary [Figure 2], most of the studies did not clearly describe the details of ineligible participants, eligible subjects refused to participate, patients completed the allocated treatment regimen and years of treatment for each group of patients. The details of risk of bias assessment in individual studies are described in Table 3.

Direct pairwise meta-analysis

There were total 10 direct pairwise comparisons [Figure 3]. Cyclosporine was associated with significantly reduced risk of mortality as compared with supportive care [OR- 0.32 (95% CI: 0.13, 0.82)] and intravenous immunoglobulin [OR- 0.08 (95% CI: 0.01, 0.54)]. Steroid+intravenous immunoglobulin combination also showed significantly reduced mortality as compared to intravenous immunoglobulin alone [OR- 0.16 (95% CI: 0.04, 0.61)]. Thalidomide was associated with a significantly higher risk of mortality as compared with supportive care [OR-11.67 (95% CI: 1.53, 89.12)]. Other pairwise comparisons did not show a statistically significant difference. There was no significant heterogeneity in a pairwise comparison with an exception of comparison between intravenous immunoglobulin and steroids (I²=72%).

Network meta-analysis

The network of direct treatment comparisons is presented in Figure 4. The size of each node corresponds to the number of participants and thickness of line between the nodes indicate number of comparisons. In line with direct meta-analysis, network analysis showed that risk of death was reduced in cyclosporine arm as compared with supportive care [OR-0.19 (95% CrI: 0.05, 0.59)] and intravenous immunoglobulin [OR- 0.21 (95% CrI: 0.05, 0.76)]. Interventions which showed reduced risk of death as compared to thalidomide were cyclosporine [OR- 0.01 (95% CrI: 0.00 - 0.31)], steroid+intravenous immunoglobulin [OR- 0.03 (95% CrI: (0.00 - 0.51)], steroids [OR- 0.06 (95% CrI: (0.00 - 0.90)] and supportive care [OR- 0.08 (95% CrI: 0.00 - 0.95)]. Unlike direct comparison, Steroid+intravenous immunoglobulin combination did not show significantly reduced mortality as compared to intravenous immunoglobulin alone [OR- 0.45 (95% CrI: 0.13, 1.60)]. Other pairwise comparisons did not show statistically significant difference [Figures 5a and b]. As shown in Table 4, the hierarchy of treatments based on SUCRA value were cyclosporine (0.93), steroid+intravenous immunoglobulin (0.76), etanercept (0.59), steroids (0.46),

			Table 2: Char	acteristics of inte	ervention groups					
Study	Intervention	Intervention dose	Basis of assigning treatment	Delay in start treatment Mean±SD, mean (95% Cl)*, median (IQR)** days	Age Mean±SD, mean (95% CI)*, median median (range)*** years	BSA Mean±SD, median (range)*** %	SCORTEN score Mean (95% Cl)*, median (IQR)**, median (range)***	Total TEN sample	Expected mortality percentage	Observed mortality percentage
Cyclosporine versu supportive care Lee <i>et al.</i> , 2017 ³²	s Supportive care	NA	All consecutively admitted patients based on selection criteria received cyclosporine. Rest	4.0±2.7	66±17	32±30	WN	12	29.5	30
	Cyclosporine	3 mg/kg/day for 10 days than 2 mg/kg/day for 10 days and lastly 1 mg/kg day for 10 days	received supportive care only -	1.8±1.7	50±21	26±20	MN	16	29.9	12.5
Mohanty <i>et al.</i> , 2017 ³³	Supportive care	AN	All consecutively admitted patients based on selection criteria received cyclosporine. Rest received supportive care only	WN	41.8±9.6	32.8+20.0	3.7±1.0	×	52.5	55.5
Poizeau <i>et al.</i> ,	Cyclosporine Supportive care	5 mg/kg/day for 10 days NA	- WN	NM ≤3 days	36.8±8.3 48 (39–63)**	35.9±20.3 10±14 (epidermal	2.05±1.1 NM	14 79	16.4 NM	5.26 NM
0107	Cyclosporine	3 mg/kg/day for 10 days	·	≤3 days	39 (2–57)**	18±18 (epidermal detachment)	NM	95	MN	MN
Steroid versus supportive care										
Brand and Rohr, 2000 ²⁰	Supportive care	NA	Dermatologist discretion	MN	MN	MN	NM	9	MN	MN
	Corticosteroid	HS: 400 mg or PS: 30–100 mg for 3–14 days	- 0	MN	MN	MN	MM	9	MN	MN
Chantaphaku	Supportive care	NA	NM	NM	NM	NM	NM	5	NM	MN
et al., 2015 ²²	Corticosteroid	DS: IV 8–40 mg/day or PS: 30–60 mg/day for 1–10 days	MN	WN	MN	WN	NM	14	WN	MN
										(<i>Contd</i>)

				Table 2: (Continu	ed)					
Study	Intervention	Intervention dose	Basis of assigning treatment	Delay in start treatment Mean±SD, mean (95% Cl)*, median (IQR)** days	Age Mean±SD, mean (95% CI)*, median (IQR)**, median (range)*** years	BSA Mean±SD, median (range)*** %	SCORTEN score Mean (95% CI)*, median (IQR)**, median (range)***	Total TEN sample	Expected mortality percentage	Observed mortality percentage
Hirapara <i>et al.</i> , 201 <i>7</i> ²⁶	Supportive care Corticosteroid	NA Mean dose - DS: 5.6 mg or HS: 200 mg or PS: 17.5 mg. Mean duration 6.9 day		NM SJS/TEN overlap: 4.4 (3.3-5.4)* TEN: 7.1 (3.3- 10.8)*	49 (4057.6)* 34.8 (27.4-42.2)*^^	MN	1.8 (1.3–2.3)*^ 1.8 (1.5–2.1)*^	28 8	MN	MN
Ioannides <i>et al.</i> , 1994 ²⁷	Supportive care Corticosteroid	NA PS equivalent 50–120 mg/ day doses of steroids	MN	WN	38.7±26.3 50.6±26.2	35.0±13.6 47.3±16.3	MN	8 11	NM NM	MN
Kaur <i>et al.</i> , 1990 ²⁹	Supportive care Corticosteroid	NA PS: 1–2 mg/kg in a short course	- MN	MN	MM MN	NN NN	MN	9 21	NM NM	MN MN
Schneck <i>et al.</i> , 2008 ³⁶	Supportive care	NA	Most patient in Germany received corticosteroid and in France supportive care)		MN	NM	WN	54	MN	MN
	Corticosteroid	PS equivalent median total dose 250 (IQR: 100–500) mg		4 (2–5)**	MM	MN	MN	62	NM	MM
IVIG versus supportive care Brown <i>et al.</i> , 2004 ²¹	Supportive care	NA	MN	5.6±4.7	43±29	46.3±26		21	MM	MN
Gravante <i>et al.</i> , 2007^{25}	IVIO Supportive care IVIG	0.4 g/kg/day Ior 4 days NA 0.4 g/kg/day for 5 days	NM Admission years	9.2 ± 12 11.2 ±13.9 8.9 ± 7.1	$4/\pm 21$ 43.7 ± 22.9 46.1 ± 18.7	44.9±24.0 58.9±34.3 66.5±32.1	MN MN	24 15 16	MN NM NM	MN MN
Paquet <i>et al.</i> , 2006 ³⁴	Supportive care IVIG	NA 1 g/kg/day for 3 days	NM -	MN	44.8±18.6 46.7±19.2	54.8±19.9 62.5±12.5	MN	5	MN MN	MN MN
Schneck <i>et al.</i> , 2008 ³⁶	Supportive care	NA	Most patient in Germany received corticosteroid and in France supportive care)		WN	MM	WN	54	WN	WN
	IVIG	Median total dose 1.9 g/ kg (IQR: 1.3–2.1)	ı	5 (3-7)**	MN	MN	MN	26	MN	MN
										(<i>Contd</i>)

Patel, et al.

A network meta-analysis of interventions for toxic epidermal necrolysis

				able 2: (Continu	ed)					
Study	Intervention	Intervention dose	Basis of assigning	Delay in start treatment	Age Mean+SD	BSA Moan+cD	SCORTEN score	Total TEN	Expected mortality	Observed mortality
			treatment	Mean±SD, mean (95% Cl)*, median (IQR)** days	mean_20, mean (95% Cl)*, median (IQR)**, median (range)*** years	median median (range)*** %	Mean (95% CI)*, median (IQR)**, median (range)***	sample	percentage	percentage
Shortt <i>et al.</i> ,	Supportive care	NA	Historical	9.1±6.9	52±20	65±27	NM	16	MN	NM
2004%	IVIG	0.2–0.75 g/kg/day for 4 days	comparator -	4.8±2.6	53±21	65±29	NM	16	MN	MN
Yeong <i>et al.</i> , 2011 ⁴²	Supportive care	, VA	Patients with severe manifestation, uncontrolled progression, sepsis, but not with renal failure received IVIG	MN	61.7±25.7	68.0±28.4	3.3±1.2		WN	MN
	IVIG	Doses NM		NM	55.1±23.1	64.9 ± 30.4	3.1 ± 1.6	6	NM	NM
Steroid+IVIG versu steroid	IS									
Chen <i>et al.</i> , 2010 ²³	Corticosteroid	HS: 100–700 mg/day IV or MPS: 40–80 mg/day. Duration NM	ı	MM	34.7±15.9^	15.3^	0.8±1.0^	15	MN	MN
	IVIG+corticosteroi	d IVIG: 0.7–7.4 g/kg IV for	NM	8.8 ± 4.6	$42.8 \pm 15.1^{\circ}$	30.2^{\wedge}	$2.0{\pm}1.7{\circ}$	15	NM	NM
		3–15 days HS: 100–700 mg/day/ methyl prednisolone 40–80 mg/day. Duration NM								
Jagadecsan <i>et al.</i> 2013 ²⁸	, Corticosteroid	DS: IV 0.1–0.3 mg/ kg/day rapidly tapered within 1–2 weeks	Consecutively admitted patients alternatively allocated	MN	38.6±17.6	49.5±14.1	2.5 (2–3)**	18	26.4	16.7
	IVIG+corticosteroi	d IVIG: 0.2–0.5 g/kg/day for 3 days DS: Same doses as corticosteroid arm	-	MN	35.4±17.7	52.8±11.6	3 (2–3)**	18	30.5	5.55
Lalosevic <i>et al.</i> , 2015 ³¹	Corticosteroid	MPS 1–2 mg/kg for 19 mean days	MN	NM	NM	MN	NM	8	MN	MN
	IVIG+corticosteroi	d Total 2 g/kg over 2 or 5 days		NM	MM	MN	NM	9	MN	MN
Schneck <i>et al.</i> , 2008 ³⁶	Corticosteroid	PS equivalent median total dose 250 (IQR: 100–500)		4 (2–5)**	MN	MN	NM	62	MN	MN
	IVIG+corticosteroi	d Same doses for corticosteroid and IVIG group	ı	MM	NM	WN	NM	29	MN	MN
										(<i>Contd</i>)

			-	Table 2: (Continu	ed)					
Study	Intervention	Intervention dose	Basis of assigning treatment	Delay in start treatment Mean±SD, mean (95% Cl)*, median (IQR)** days	Age Mean±SD, mean (95% CI)*, median (IQR)**, median (range)*** years	BSA Mean±SD, median (range)*** %	SCORTEN score Mean (95% CI)*, median (IQR)**, median (range)***	Total TEN sample	Expected mortality percentage	Observed mortality percentage
Stella <i>et al.</i> , 2007 ³⁸	Corticosteroid	HS: 200–500 mg MPS: 2 g/BS: 12 mg/day. Duration NM	Historical comparator	MM	51.0±16.2	71.7±23.8	MN	9	MN	MN
	IVIG+corticosteroi	d IVIG: 0.7 g/kg/day for 4 days MPS 1 g/day for initial 2 days		NN	59.3±18.4	22.4±13.8	MN	21	MN	MN
Yang <i>et al.</i> , 2009 ⁴¹	Corticosteroid	MPS 1–1.5 mg/kg/day till re-epithelialization than prompt tapering	Historical comparator	MN	43.7±23.1	41.3±11.3	2.3 ± 1.0	35	19.2^	22.2^
	IVIG+corticosteroi	d 0.4 g/kg/day for 5 days and MPS as mentioned above	I	MN	48.2±21.5	40.0±16.1	2.3±0.9	12	17.5^	15.0^
Zhu <i>et al.</i> , 2012	⁴³ Corticosteroid	MPS 1.5 mg/kg/day till reepithelization than prompt tapering	Patients with progressive disease after receiving MPS for 3–5 days were given IVIG	MN	51±16	84.6±17.8	2.4±1.2	16	24.4	22.7
	IVIG+corticosteroi	d IVIG: 0.4 g/kg/day for 5 days plus MPS as mentioned above		NN	44±20	91.7±9.1	2.3±1.2	39	23.9	12.8
Iv to versus steron Kim <i>et al.</i> , 2005	a ³⁰ Corticosteroid	MPS IV 250–1000 mg/ day followed by oral PS.	MN	NM	NM	MN	MN	21	28.4	28.6
	IVIG	1.6–2.0 g/kg. Duration NM	1	NM	NM	NM	MN	14	16.8	7.1
Schneck et al., 2008 ³⁶	Corticosteroid	PS equivalent median total dose 250 (IQR: 100–500) mg		4 (2–5)**	NM	MM	MN	62	MN	MN
	IVIG	Median total dose 1.9 g/ kg (IQR: 1.3–2.1)	,	5 (3–7)**	MN	NM	MN	26	MN	MN
Steroid+IVIG versi supportive care	sn									
Schneck et al., ³⁶ 2008	Supportive care	NA	Most patient in Germany received corticosteroid and in France supportive care)		WN	W	WN	54	WX	WX
										(<i>Contd</i>)

				Table 2: (Continu	ed)					
Study	Intervention	Intervention dose	Basis of assigning treatment	Delay in start treatment Mean±SD, mean (95% Cl)*, median (IQR)** days	Age Mean±SD, mean (95% Cl)*, median (IQR)**, median (range)*** years	BSA Mean±SD, median (range)*** %	SCORTEN score Mean (95% CI)*, median (IQR)**, median (range)***	Total TEN sample	Expected mortality percentage	Observed mortality percentage
	IVIG+corticosteroi	d Same doses for corticosteroid and IVIG group		WN	MN	MN	WN	29	MN	MN
Cyclosporine versus IVIG										
González-Herrad et al., 2017 ²⁴	a Cyclosporine	3 mg/kg/day orally or 1 mg/kg/day IV till reepithelization and tapered off	Admission in one of two hospitals d	MN	47.0±17.2^	39.3±25.8^	2.4±1.1^	23	25	7.7
	IVIG	0.75 g/kg/day for 4 days		NM	$55.0{\pm}20.8{^{\wedge}}$	29.9±26.2^	$2.7{\pm}1.3{\circ}$	6	33.6	45.5
Steroid+IVIG versu IVIG	S									
Schneck <i>et al.</i> , 2008 ³⁶	IVIG	Median total dose 1.9 g/kg (IQR: 1.3–2.1)		5 (3–7)**	MN	MN	MM	26	MM	MN
	IVIG+corticosteroi	d Same doses for corticosteroid and IVIG group	ı	MN	WN	WN	MN	29	MN	MN
Etanercept versus steroid										
Wang <i>et al.</i> , 2018 ³⁹	Corticosteroid	PS 1–1.5 mg/kg/day IV until skin lesion healed	Randomization with allocation concealment	MN	57.3±24.4	42.1±22.4	1.9±1.4^	17	20.3	16.3
	Etanercept	25/50 mg sc twice a week until skin lesion healed			51.6±15.7	46.3±24.2	$1.8{\pm}1.3{\circ}$	18	17.7	8.3
Thalidomide versus supportive care										
Wolkenstein et al., 1998 ⁴⁰	Placebo (supportive care)	NA	Randomization, double blind using placebo	WN	50.5 (23–58)***	30.5 (10–85)***	MN	10	NM	MN
	Thalidomide	400 mg/day for 5 days			53 (23-81)***	43.5 (26–90)***	NM	12	NM	NM
^A Data of all SJS pation applicable, IV: Intravo	ents, TEN: Toxic epide enous, IVIG: IV immur	ermal necrolysis, SCORTEN: 9 noglobulin, MPS: Methylpredn	Score of TEN, SD: Stan isolone, HS: Hydrocorti	dard deviation, CI: Co sone, PS: Prednisolor	nfidence interval, IQI ie, DS: Dexamethas	R: Interquartile ran one, BS: Betameth	ge, BSA: Body surfac asone, SJS: Stevens	ce area, NN	 Not mentione syndrome 	ed, NA: Not

A network meta-analysis of interventions for toxic epidermal necrolysis

Figure 2: Risk of bias summary

	Experimen	ntal	contro	1		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight I	M-H, Random, 95% Cl	M-H, Random, 95% CI
1.1.1 Cyclosporine vs. Su	pportive car	10		12	27 496	0 22 10 04 1 261	
Mohanty 2017	1	14	4	8	13.6%	0.08 [0.01, 0.90]	·
Poizeau 2018	6	95	9	79	59.0%	0.52 [0.18, 1.54]	
Subtotal (95% CI)		125		99	100.0%	0.32 [0.13, 0.82]	-
Total events	10 Chill - 2.23	- df = 1	19 /P=0.21	- IR	10%		
Test for overall effect: Z =	2.38 (P = 0.0)	(2)	c (r = 0.3	9,1 -	10%		
		-,					
1.1.2 Steroid vs. Support	ve care	5	8	120	1000 anter:	esterna contre constant	
Brand 2000 Chontophokul 2016	1	6	3	6	11.6%	0.20 [0.01, 2.91]	· · · · · · · · · · · · · · · · · · ·
Hirapara 2017	2	28	0	8	9.1%	1.60 (0.07, 36.80)	
Ioannides 1994	5	11	1	8	13.6%	5.83 [0.52, 64.82]	
Kaur 1990	5	21	3	9	20.9%	0.63 [0.11, 3.46]	
Schneck 2008 Subtotal (95% CI)	15	62	17	54	36.2%	0.69 [0.31, 1.57]	
Total events	28	142	27	30	100.076	0.04 [0.22, 1.05]	
Heterogeneity: Tau ² = 0.6	3; Chi ² = 8.16	3, df = 5	5 (P = 0.15	5); l² =	39%		
Test for overall effect: Z =	0.84 (P = 0.4)	0)					
1.1.3 MG vs. supportive	are						
Brown 2004	10	24	6	21	22.2%	1.79 (0.51, 6.21)	
Gravante 2007	7	16	4	15	15.6%	2.14 [0.47, 9.70]	
Paquet 2006	1	6	3	5	4.8%	0.13 [0.01, 2.18]	· · · · · · · · · · · · · · · · · · ·
Shortt 2008	4	26	1/	54 16	34.0%	1.36 [0.51, 3.61]	
Yeong 2011	2	9	3	7	7.9%	0.38 [0.04, 3.34]	
Subtotal (95% CI)		97		118	100.0%	1.09 [0.59, 2.03]	+
Total events	34		39	2). 12	701		
Test for overall effect 7 =	0.28 (P = 0.7)	a' αι = ; a' αι = ;	o (r ^a = 0.3)); r=	/ 70		
		-/					
1.1.4 Steroid+IVIG vs. Ste	roid						
Chen 2010	3	15	2	15	10.3%	1.63 [0.23, 11.46]	
Jagadeesan 2013 Lalosevic 2015	1	18	3	18	7.0%	0.29 [0.03, 3.14]	
Schneck 2008	6	29	15	62	34.5%	0.82 [0.28, 2.38]	
Stella 2007	6	21	4	6	10.5%	0.20 [0.03, 1.40]	
Yang 2009	2	12	8	35	13.5%	0.68 [0.12, 3.74]	
Zhu 2012 Subtotal (95% CI)	5	39	5	160	19.8%	0.32 [0.08, 1.33]	-
Total events	24		38				
Heterogeneity: Tau ² = 0.0); Chi² = 3.95	5, df = 6	6 (P = 0.68	3); I ² =	0%		
Test for overall effect: Z =	1.67 (P = 0.1	0)					
115MGvs steroid							
Kim 2005	1	14	6	21	40.4%	0.19 [0.02, 1.81]	
Schneck 2008	10	26	15	62	59.6%	1.96 [0.73, 5.22]	
Subtotal (95% CI)		40	~	83	100.0%	0.77 [0.08, 7.38]	
Total events Heterogeneity Tou ² = 1.9	11 Chi2= 3.54	5 df = 1	21 (P = 0.06	3) · 12 =	72%		
Test for overall effect Z =	0.23 (P = 0.8	2)	(1 - 0.00	<i></i>	12.00		
1.1.6 Steroid+IVIG vs. Su	oportive car	e					-
Schneck 2008 Subtotal (95% CI)	6	29	17	54	100.0%	0.57 [0.20, 1.65]	
Total events	6		17				
Heterogeneity: Not applic:	able						
Test for overall effect: Z =	1.04 (P = 0.3	:0)					
1.1.7 Cyclosporine vs M	G						
González-Herrada 2017	2	23	5	9	100.0%	0.08 [0.01, 0.54]	
Subtotal (95% CI)		23		9	100.0%	0.08 [0.01, 0.54]	
Total events	2		5				
Test for overall effect 7 =	1018 2 58 (P = 0 0	10)					
		,					
1.1.8 Steroid+IVIG vs. IVI	5						
Schneck 2008 Subtotal (95% CI)	6	29	10	16	100.0%	0.16 [0.04, 0.61]	
Total events	6	29	10	10	100.0%	5.10 [0.04, 0.01]	
Heterogeneity: Not applica	able						
Test for overall effect Z =	2.69 (P = 0.0	07)					
1.1.9 Etanercontve Stor	bid						
Wang 2018	4	18	5	17	100.0%	0.69 [0 15 3 15]	
Subtotal (95% CI)		18	2	17	100.0%	0.69 [0.15, 3.15]	
Total events	4		5				
Heterogeneity: Not applic:	able 1 40 /P = 0 0	21					
reactor overall ellect Z =	0.40 (F = 0.6	3)					
1.1.10 Thaliodomide vs. S	upportive c	are					
Wolkenstein 1998	10	12	3	10	100.0%	11.67 [1.53, 89.12]	
Subtotal (95% CI)	10	12	2	10	100.0%	11.67 [1.53, 89.12]	
Heterogeneity: Not applic:	able		3				
Test for overall effect Z =	2.37 (P = 0.0	2)					
							0.01 0.1 1 10 100
Test for subgroup differen	ces: Chi ² = 2	21.59.	df = 9 (P =	0.01)	IF = 58.3%		Favours [experimental] Favours [control]
and a start among						2	

Figure 3: Meta-analytic summary of direct treatment comparisons

intravenous immunoglobulin (0.40), supportive care (0.34) and thalidomide (0.02).

Sensitivity analysis

Risk of bias assessment: The sensitivity analysis was performed by excluding high risk studies. No major differences

were observed between all included studies and low-risk bias studies. As shown in Figures 6a and b, the risk of death was significantly reduced with cyclosporine as compared with supportive care, intravenous immunoglobulin and steroids. Interventions that showed a reduced risk of death as compared to thalidomide were cyclosporine, steroid+intravenous immunoglobulin, steroids, intravenous immunoglobulin and supportive care. Steroid+intravenous immunoglobulin combination also showed significantly reduced mortality as compared to intravenous immunoglobulin alone. As shown in Table 4, the most effective interventions based on SUCRA value were cyclosporine (0.96), steroid+intravenous immunoglobulin (0.78) and etanercept (0.56).

Study design: The sensitivity analysis was performed for retrospective design studies. The risk of mortality was significantly reduced with cyclosporine as compared with supportive care [OR- 0.24 (95% CrI: 0.07, 0.92)]. The most effective treatments hierarchy based on SUCRA value were cyclosporine, steroid+intravenous immunoglobulin and steroids [Table 4]. It was not possible to explore other designs due to the small number of studies in each group [prospective (3), randomized controlled trial (2) and prospective-retrospective (1)].

Study location: The sensitivity analysis was performed based on studies conducted in developed or developing countries. Cyclosporine is the most effective intervention in both developed and developing countries. The other effective treatments in developed countries were steroid+intravenous immunoglobulin and steroids, while in developing countries were intravenous immunoglobulin and steroid+intravenous immunoglobulin [Table 4].

Inconsistency assessment

Both direct and indirect evidence was available for 8 treatment pairs which were part of the closed loop of network meta-analysis. As shown in Tables 5a and b, there were no inconsistencies between direct and indirect estimates of any of the treatment pairs (all 95% CIs across zero and p>0.05) for all studies and low risk of bias studies.

The comparison-adjusted funnel plot indicated absence of major asymmetry around zero line [Figure 7].

Discussion

In this network meta-analysis, we compared the effectiveness of five immunomodulating treatment modalities for TEN patients - steroid, intravenous immunoglobulin, combination of steroid+intravenous immunoglobulin, etanercept and cyclosporine. Our findings are based on a sample of 979 patients of TEN from 24 studies. Cyclosporine, steroid+intravenous immunoglobulin combination, etanercept, steroid and intravenous immunoglobulin were ranked above supportive care. Probabilities of being a better intervention than supportive care did not alter

			Tab	ile 3: Risk of	bias (quality	assessment)	in individual	studie	6				
Study	Description of study hypothesis/	Description of main outcome in	Identification of main outcome	Selection criteria description	Ineligible participants' details	Eligible subjects refused to	Patients completed the allocated	confor for	scriptic unding each gr	on of fol factor o oup of	lowing istributior patients	Reporting of 95% Cl and/ or <i>P</i> value for	Total score
	aim/ objective	introduction/ methods		-		participate	treatment regimen	Age S	everity	BSA	Years	mortality data*	
Brand and Rohr, 2000 ²⁰	-	0	0	0	0	0	0	0	0	-	0	0	2
Brown <i>et al.</i> , 2004 ²¹	1	1	0	0	0	0	0	-	0	-	0	0.33	4.33
Chantaphakul et al., 2015 ²²	1	1	0	0	0	0	0	0	0	0	0	0.33	2.33
Chen et al., 2010 ²³	1	0	0	0	0	0	0	1	1	1	0	0.67	4.67
González-Herrada et al., 2017 ²⁴	1	1	1	1	0	0	0	1	1	1	0	0.67	7.67
Gravante <i>et al.</i> , 2007 ²⁵	1	0	0	0	0	0	0	1	1	1	1	0.33	5.33
Hirapara <i>et al.</i> , 2017 ²⁶	1	0	0	0	0	0	0	1	1	1	0	0.33	4.33
Ioannides <i>et al.</i> , 1994 ²⁷	-	0	0	1	0	0	0	-	-	1	0	0	5
Jagadeesan <i>et al.</i> , 2013 ²⁸	1	1	0	1	0	0	0	1	-	1	0	0.67	6.67
Kaur et al., 1990 ²⁹	1	0	0	0	0	0	0	0	0	0	0	0	1
Kim et al., 2005 ³⁰	1	1	0	0	0	0	0	0	1	1	0	0.67	4.67
Lalosevic et al., 2015 ³¹	1	0	0	0	0	0	0	0	0	1	0	0.33	2.33
Lee <i>et al.</i> , 2017 ³²	1	1	1	1	1	0	0	1	1	1	0	0.67	8.67
Mohanty <i>et al.</i> , 2017 ³³	-	0	0	1	0	0	0	1	1	1	1	0.33	6.33
Paquet <i>et al.</i> , 2006 ³⁴	1	1	1	0	0	0	0	1	1	1	0	0	9
Poizeau <i>et al.</i> , 2018 ³⁵	1	1	1	0	0	0	0	-	-	-	1	0.67	7.67
Schneck <i>et al.</i> , 2008 ³⁶	1	1	1	0	0	0	0	1	1	1	0	0.67	6.67
Shortt <i>et al.</i> , 2014 ³⁷	-	1	0	1	0	0	0	1	1	1	0	0.33	6.33
Stella et al., 2007 ³⁸	1	1	0	0	0	0	0	-	1	-	0	0.67	5.67
Wang <i>et al.</i> , 2018 ³⁹	1	1	1	1	1	0	1	1	1	1	0	0.67	9.67
Wolkenstein et al., 1998 ⁴⁰	1	1	1	1	1	1	1	1	1	1	0	0.67	10.67
Yang et al., 200941	1	1	0	0	0	0	0	1	1	1	0	0.67	5.67
Yeong <i>et al.</i> , 2011 ⁴²	1	1	1	1	0	0	0	1	1	1	0	0.33	7.33
Zhu et al., 2012 ⁴³	1	1	1	1	0	0	0	1	1	1	1	0.67	8.67
No description of ite score - 0.33. BSA: B	m carries score (tody surface area	0, Description of ex a, CI: Confidence i	ach point score=1 on the second states and the second second second second second second second second second s	except for repor	ting of mortality (data where desc	ription of "95% C	I and P	/alue bot	h" carries	: score - 0.6	7 and "only <i>P</i> value rep	orting" carries

Figure 4: Network plot of treatment comparison. Cy: Cyclosporine, Supp: Supportive care, Str: Steroid, IG: Intravenous immunoglobulin, Str + IG: Steroid + intravenous immunoglobulin, Et: Etanercept, T: Thalidomide, Size of each node corresponds to number of participants. Thickness of line between nodes indicate number of comparisons

Figure 5a: Forest plot of treatment comparisons for mortality. OR: Odds ratio, CrI: Credibility interval, IVIG: Intravenous immunoglobulin

for cyclosporine, steroid+intravenous immunoglobulin combination and etanercept in sensitivity analysis.

Cyclosporine						
0.48 (0.08 – 2.34)	Steroids+IVIG					
0.36 (0.02 - 4.39)	0.73 (0.06 - 8.90)	Etanercept				
0.24 (0.05 - 1.01)	0.51 (0.20 – 1.27)	0.70 (0.07 – 7.46)	Steroids			
0.21 (0.05 – 0.76)	0.45 (0.13 - 1.60)	0.60 (0.05 - 8.11)	0.88 (0.33 - 2.41)	IVIG		
0.19 (0.05 – 0.59)	0.41 (0.12 - 1.32)	0.55 (0.05 - 6.32)	0.81 (0.31 - 1.91)	0.92 (0.38 - 1.94)	Supportive care	
0.01 (0.00 - 0.31)	0.03 (0.00 - 0.51)	0.04 (0.00 - 1.28)	0.06 (0.00 - 0.90)	0.07 (0.00 - 1.06)	0.08 (0.00 - 0.95)	Thalidomide

Figure 5b: League table of treatment ranking in order of better to worst outcome from left to right. Data indicates OR: Odds ratio, CrI: Credibility interval, IVIG: Intravenous immunoglobulin

Cyclosporine can decrease the mortality in TEN patients. It showed beneficial effects as compared with supportive care and intravenous immunoglobulin in this study. Cyclosporine was ranked first in SURCRA analysis. This is in line with three earlier meta-analyses suggesting its beneficial effect on patient survival.¹⁰⁻¹² Similar survival benefits of cyclosporine were also observed in other studies which are not part of included studies in this network meta-analysis.44-49 Poizeau et al. observed no survival benefit with cyclosporine on propensity score adjustment. However, the authors mentioned that patients with the nonprogressive disease were more likely to have received supportive care than those with cyclosporine.³⁵ Our findings should be interpreted cautiously as they are based on four retrospective studies only. Moreover, included studies either did not consider patients with comorbidities (renal insufficiency, infection, cancer, etc.) or did not report this information.

Ranking analysis suggests etanercept as a promising immunomodulating option for TEN patients. This should be interpreted cautiously as it could not show significant survival benefit over other interventions. The wide confidence interval could be due to only one included study and small sample size. A double-blind randomized control clinical trial has been registered on clinicaltrial.gov (NCT02987257) which is intended to compare cyclospprin, etanercept and supportive care with the sample of 267 patients. Though mortality is the secondary objective, this trial can validate our findings of beneficial effect of cyclosporine and etanercept over supportive care in TEN patients.⁵⁰

Intravenous immunoglobulin or steroids alone do not improve survival in TEN patients. Both the therapies showed trends of higher mortality than cyclosporine, steroid+intravenous immunoglobulin combination and etanercept. In sensitivity analysis, they showed the trend of worse outcome than supportive care. These findings are in accordance with the earlier meta-analyses.^{5-8,10} In a meta-analysis by Zimmermann *et al.*, steroid showed significant survival benefit in unstratified individual patient data meta-analysis. However, it was not substantiated on stratified type individual patient data and study level meta-

	Table 4: Hierarchy of tr	eatments and Surface under	the cumulative ranking curve	es value
All studies	Low risk studies (<i>n</i> =16)	Retrospective design (n=18)	Developed countries (n=11)	Developing countries (n=13)
Cyclosporine (0.93)	Cyclosporine (0.96)	Cyclosporine (0.90)	Cyclosporine (0.89)	Cyclosporine (0.73)
Steroid+IVIG (0.76)	Steroid+IVIG (0.78)	Steroid+IVIG (0.76)	Steroid+IVIG (0.81)	IVIG (0.72)
Etanercept (0.59)	Etanercept (0.56)	Steroids (0.38)	Steroids (0.50)	Steroid+IVIG (0.58)
Steroids (0.46)	Supportive care (0.42)	IVIG (0.38)	Supportive care (0.46)	Etanercept (0.53)
IVIG (0.40)	Steroids (0.40)	Supportive care (0.22)	IVIG (0.32)	Steroids (0.34)
Supportive care (0.34)	IVIG (0.38)	-	Thalidomide (0.02)	Supportive care (0.11)
Thalidomide (0.02)	Thalidomide (0.01)	-	-	<u>-</u>
	1.1.12			

IVIG: Intravenous immunoglobulin

Figure 6a: Forest plot of treatment comparisons for mortality in low risk of bias studies. OR: Odds ratio, CrI: Credibility interval, IVIG: Intravenous immunoglobulin

analysis.¹⁰ Earlier meta-analyses observed contradictory mortality findings with different doses of intravenous immunoglobulin.^{7,8,51} We could not evaluate high vs. low dose effect due to small sample of studies in intravenous immunoglobulin group. Similarly, we also could not evaluate the effect of individual steroids, their doses and duration of therapy on mortality.

In contrast to steroids and intravenous immunoglobulin monotherapy, their combination stands second on ranking analysis. It suggests better therapeutic effect with combination than intravenous immunoglobulin or steroids alone. In direct pairwise comparison, seven of nine included studies of combination therapy showed a trend of improved survival than intravenous immunoglobulin, steroid and supportive care

Cyclosporine						
0.47 (0.09 - 1.86)	Steroids+IVIG					
0.26 (0.02 – 2.70)	0.59 (0.07 – 5.21)	Etanercept				
0.19 (0.07 – 0.53)	0.41 (0.13 - 1.68)	0.70 (0.07 – 7.04)	Supportive care			
0.19 (0.03 - 0.61)	0.40 (0.15 - 0.87)	0.70 (0.08 – 4.53)	1.00 (0.24 - 2.37)	Steroids		
0.18 (0.05 - 0.53)	0.38 (0.12 - 1.65)	0.63 (0.07 - 7.61)	0.93 (0.41 - 2.22)	0.93 (0.37 – 4.79)	IVIG	
0.01 (0.00 - 0.11)	0.02 (0.00 - 0.37)	0.04 (0.00 - 1.12)	0.06 (0.00 - 0.51)	0.06 (0.00 - 0.82)	0.06 (0.00 - 0.66)	Thalidomide

Figure 6b: League table of treatment ranking in order of better to worst outcome from left to right (low risk of bias studies). Data indicates OR: Odds ratio, CrI: Credibility interval, IVIG: Intravenous immunoglobulin

alone. Though a meta-analysis by Ye *et al.* did not observe mortality benefit with steroid+intravenous immunoglobulin combination in SJS/TEN patients, the authors observed significant benefit in TEN patients irrespective of intravenous immunoglobulin dose in combination therapy.⁹ This is also corroborated by a recent multicentric retrospective study from the United States with a larger sample size which observed the lowest standardized mortality ratio with combination therapy than therapy with intravenous immunoglobulin, steroid or supportive care alone.⁵²

Limitations

This network meta-analysis has several limitations. Only two databases (PubMed and Google Scholar) for English language studies were searched. This could have missed some of the literature. We did not consider SJS (body surface area < 10%) cases. This prevented us from checking the effect of interventions on all severity of SJS cases. We have not included single-arm studies through matching of study characteristics. It could have strengthened the evidence. The network meta-analysis summary and ranking are mainly based on observational studies. Most studies did not describe the method of treatment allocation. There is a possibility that patients could have been treated with a corticosteroid at an outside hospital prior to admission. Most studies did not describe the time-gap between the development of symptoms and initiation of therapy. It could have affected the mortality across the treatment groups. This could also be due to differences in use of supportive care across the studies.

	Table 5a:	Inconsiste	ncy betwe	en direct and	l indirect estimation	ates		
Comparison	Number of studies	Log_ NMA	Log_ direct	Log_ indirect	Log_ difference	Log_diff_95 Cl_lower	Log_diff_95 Cl_upper	Р
Cyclosporine: IVIG	1	-1.46	-2.57	-1.10	-1.48	-3.92	0.97	0.24
Cyclosporine: Supportive care	3	-1.43	-1.18	-2.65	1.48	-0.97	3.92	0.24
IVIG: Steroids	2	0.25	0.15	0.36	-0.21	-1.87	1.46	0.81
IVIG: Steroids+IVIG	1	0.83	0.87	0.79	0.08	-1.89	2.05	0.94
IVIG: Supportive care	6	0.03	0.05	-0.04	0.09	-1.75	1.92	0.93
Steroids: Steroids+IVIG	7	0.58	0.55	1.34	-0.79	-4.60	3.02	0.68
Steroids: Supportive care	6	-0.22	-0.42	0.53	-0.95	-2.73	0.84	0.30
Steroids+IVIG: Supportive care	1	-0.80	-0.57	-0.99	0.43	-1.40	2.25	0.65

NMA: Network meta-analysis, CI: Confidence interval, IVIG: Intravenous immunoglobulin

Table 5b: Inconsistency between direct and indirect estimates (low risk of bias studies)								
Comparison	Number of studies	Log_ NMA	Log_ direct	Log_ indirect	Log_ difference	Log_diff_95 Cl_lower	Log_diff_95 Cl_upper	Р
Cyclosporine: IVIG	1	-1.49	-2.57	-1.13	-1.45	-3.81	0.92	0.23
Cyclosporine: Supportive care	3	-1.36	-1.13	-2.58	1.45	-0.92	3.81	0.23
IVIG: Steroids	1	0.17	0.67	-0.73	1.40	-0.51	3.32	0.15
IVIG: Steroids+IVIG	1	0.96	0.87	1.09	-0.21	-2.29	1.86	0.84
IVIG: Supportive care	5	0.13	-0.07	1.82	-1.89	-4.15	0.36	0.10
Steroids: Steroids+IVIG	5	0.79	0.73	6.68	-5.94	-13.64	1.74	0.13
Steroids: Supportive care	2	-0.04	-0.06	0.04	-0.10	-2.17	1.97	0.92
Steroids+IVIG: Supportive care	1	-0.83	-0.57	-1.25	0.68	-1.26	2.63	0.49

NMA: Network meta-analysis, CI: Confidence interval, IVIG: Intravenous immunoglobulin

Figure 7: Funnel plot

Studies also used varied doses and duration of therapy for each intervention.

Conclusion

Cyclosporine reduces the mortality in TEN patients. Other promising interventions could be steroid+intravenous immunoglobulin combination and etanercept. Our findings could be biased as the evidence is based on analysis of retrospective studies. Double-blind randomized studies are recommended to compare the effect of interventions like cyclosporine, steroid+intravenous immunoglobulin and etanercept with supportive care. Investigators planning prospective studies should use a randomized study design. Smaller sample randomized study may not show statistically meaningful mortality differences but will definitely contribute to meta-analysis of randomized controlled studies.

Acknowledgment

We would like to thank following authors who provided further information regarding their articles: Francisco J. de Abajo (González-Herrada *et al.*, 2017),²⁴ Haur Yueh Lee (Lee *et al.*, 2017),³² Nilay Kanti Das (Mohanty *et al.*, 2017),³³ Laurence Fardet (Poizeau *et al.*, 2018),³⁵ Peggy Sekula (Schneck *et al.*, 2008).³⁶

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

- Bastuji-Garin S, Rzany B, Stern RS, Shear NH, Naldi L, Roujeau JC. Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch Dermatol 1993;129:92-6.
- Patel TK, Barvaliya MJ, Sharma D, Tripathi C. A systematic review of the drug-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Indian population. Indian J Dermatol Venereol Leprol 2013;79:389-98.
- 3. Hsu DY, Brieva J, Silverberg NB, Silverberg JI. Morbidity and

mortality of Stevens-Johnson syndrome and toxic epidermal necrolysis in United States adults. J Invest Dermatol 2016;136:1387-97.

- Yamane Y, Matsukura S, Watanabe Y, Yamaguchi Y, Nakamura K, Kambara T, *et al*. Retrospective analysis of Stevens-Johnson syndrome and toxic epidermal necrolysis in 87 Japanese patients--Treatment and outcome. Allergol Int 2016;65:74-81.
- Roujeau JC, Bastuji-Garin S. Systematic review of treatments for Stevens-Johnson syndrome and toxic epidermal necrolysis using the SCORTEN score as a tool for evaluating mortality. Ther Adv Drug Saf 2011;2:87-94.
- Law EH, Leung M. Corticosteroids in Stevens-Johnson Syndrome/ toxic epidermal necrolysis: current evidence and implications for future research. Ann Pharmacother 2015;49:335-42.
- Huang YC, Li YC, Chen TJ. The efficacy of intravenous immunoglobulin for the treatment of toxic epidermal necrolysis: A systematic review and meta-analysis. Br J Dermatol 2012;167:424-32.
- Huang YC, Chien YN, Chen YT, Li YC, Chen TJ. Intravenous immunoglobulin for the treatment of toxic epidermal necrolysis: A systematic review and meta-analysis. G Ital Dermatol Venereol 2016;151:515-24.
- Ye LP, Zhang C, Zhu QX. The effect of intravenous immunoglobulin combined with corticosteroid on the progression of Stevens-Johnson syndrome and toxic epidermal necrolysis: A meta-analysis. PLoS One 2016;11:e0167120.
- Zimmermann S, Sekula P, Venhoff M, Motschall E, Knaus J, Schumacher M, *et al.* Systemic immunomodulating therapies for Stevens-Johnson syndrome and toxic epidermal necrolysis: A systematic review and meta-analysis. JAMA Dermatol 2017;153:514-22.
- Chen YT, Hsu CY, Chien YN, Lee WR. Huang YC. Efficacy of cyclosporine for the treatment of Stevens-Johnson syndrome and toxic epidermal necrolysis: Systemic review and meta-analysis. Dermatol Sin 2017;35:131-7.
- Ng QX, De Deyn MLZQ, Venkatanarayanan N, Ho CY, Yeo WS. A meta-analysis of cyclosporine treatment for Stevens-Johnson syndrome/toxic epidermal necrolysis. J Inflamm Res 2018;11: 135-42.
- Greco T, Biondi-Zoccai G, Saleh O, Pasin L, Cabrini L, Zangrillo A, et al. The attractiveness of network meta-analysis: A comprehensive systematic and narrative review. Heart Lung Vessel 2015;7:133-42.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557-60.
- Higgins JP, Whitehead A. Borrowing strength from external trials in a meta-analysis. Stat Med 1996;15:2733-49.
- Caldwell DM, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: Combining direct and indirect evidence. BMJ 2005;331:897-900.
- Spiegelhalter DJ, Myles JP, Jones DR, Abrams KR. Methods in health service research. An introduction to bayesian methods in health technology assessment. BMJ 1999;319:508-12.
- Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment metaanalysis: An overview and tutorial. J Clin Epidemiol 2011;64:163-71.
- Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Stat Med 2010;29:932-44.
- Brand R, Rohr JB. Toxic epidermal necrolysis in Western Australia. Australas J Dermatol 2000;41:31-3.
- Brown KM, Silver GM, Halerz M, Walaszek P, Sandroni A, Gamelli RL. Toxic epidermal necrolysis: Does immunoglobulin make a difference? J Burn Care Rehabil 2004;25:81-8.
- Chantaphakul H, Sanon T, Klaewsongkram J. Clinical characteristics and treatment outcome of Stevens-Johnson syndrome and toxic epidermal necrolysis. Exp Ther Med 2015;10:519-24.
- Chen J, Wang B, Zeng Y, Xu H. High-dose intravenous immunoglobulins in the treatment of Stevens-Johnson syndrome and toxic epidermal necrolysis in Chinese patients: A retrospective study of 82 cases. Eur J Dermatol 2010;20:743-7.
- González-Herrada C, Rodríguez-Martín S, Cachafeiro L, Lerma V, González O, Lorente JA, *et al*. Cyclosporine use in epidermal necrolysis is associated with an important mortality reduction: Evidence from three different approaches. J Invest Dermatol 2017;137:2092-100.

- Gravante G, Delogu D, Marianetti M, Trombetta M, Esposito G, Montone A. Toxic epidermal necrolysis and Steven Johnson syndrome: 11-years experience and outcome. Eur Rev Med Pharmacol Sci 2007;11:119-27.
- Hirapara HN, Patel TK, Barvaliya MJ, Tripathi C. Drug-induced Stevens-Johnson syndrome in Indian population: A multicentric retrospective analysis. Niger J Clin Pract 2017;20:978-83.
- Ioannides D, Vakali G, Chrysomallis F, Chaidemenos G, Mpatsios K, Mourellou O, *et al.* Toxic epidermal necrolysis: A study of 22 cases. J Eur Acad Dermatol Venereol 1994;3:266-75.
- Jagadeesan S, Sobhanakumari K, Sadanandan SM, Ravindran S, Divakaran MV, Skaria L, *et al*. Low dose intravenous immunoglobulins and steroids in toxic epidermal necrolysis: A prospective comparative open-labelled study of 36 cases. Indian J Dermatol Venereol Leprol 2013;79:506-11.
- Kaur S, Nanda A, Sharma KV. Elucidation and management of 30 patients of drug induced toxic epidermal necrolysis (DTEN). Indian J Dermatol Venereol Leprol 1990;56:196-9.
- Kim KJ, Lee DP, Suh HS, Lee MW, Choi JH, Moon KC, *et al.* Toxic epidermal necrolysis: Analysis of clinical course and SCORTENbased comparison of mortality rate and treatment modalities in Korean patients. Acta Derm Venereol 2005;85:497-502.
- Lalosevic J, Nikolic M, Gajic-Veljic M, Skiljevic D, Medenica L. Stevens-Johnson syndrome and toxic epidermal necrolysis: A 20-year single-center experience. Int J Dermatol 2015;54:978-84.
- 32. Lee HY, Fook-Chong S, Koh HY, Thirumoorthy T, Pang SM. Cyclosporine treatment for Stevens-Johnson syndrome/toxic epidermal necrolysis: Retrospective analysis of a cohort treated in a specialized referral center. J Am Acad Dermatol 2017;76:106-13.
- Mohanty S, Das A, Ghosh A, Sil A, Gharami RC, Bandyopadhyay D, et al. Effectiveness, safety and tolerability of cyclosporine versus supportive treatment in Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis: A record-based study. Indian J Dermatol Venereol Leprol 2017;83:312-6.
- Paquet P, Kaveri S, Jacob E, Pirson J, Quatresooz P, Piérard GE. Skin immunoglobulin deposition following intravenous immunoglobulin therapy in toxic epidermal necrolysis. Exp Dermatol 2006;15:381-6.
- Poizeau F, Gaudin O, Le Cleach L, Duong TA, Hua C, Hotz C, *et al.* Cyclosporine for epidermal necrolysis: Absence of Beneficial effect in a retrospective cohort of 174 patients-exposed/unexposed and propensity score-matched analyses. J Invest Dermatol 2018;138:1293-300.
- 36. Schneck J, Fagot JP, Sekula P, Sassolas B, Roujeau JC, Mockenhaupt M. Effects of treatments on the mortality of Stevens-Johnson syndrome and toxic epidermal necrolysis: A retrospective study on patients included in the prospective EuroSCAR Study. J Am Acad Dermatol 2008;58:33-40.
- Shortt R, Gomez M, Mittman N, Cartotto R. Intravenous immunoglobulin does not improve outcome in toxic epidermal necrolysis. J Burn Care Rehabil 2004;25:246-55.
- Stella M, Clemente A, Bollero D, Risso D, Dalmasso P. Toxic epidermal necrolysis (TEN) and Stevens-Johnson syndrome (SJS): experience with high-dose intravenous immunoglobulins and topical conservative approach. A retrospective analysis. Burns 2007;33:452-9.
- Wang CW, Yang LY, Chen CB, Ho HC, Hung SI, Yang CH, et al. Randomized, controlled trial of TNF-α antagonist in CTL-mediated severe cutaneous adverse reactions. J Clin Invest 2018;128:985-96.
- Wolkenstein P, Latarjet J, Roujeau JC, Duguet C, Boudeau S, Vaillant L, et al. Randomised comparison of thalidomide versus placebo in toxic epidermal necrolysis. Lancet 1998;352:1586-9.
- 41. Yang Y, Xu J, Li F, Zhu X. Combination therapy of intravenous immunoglobulin and corticosteroid in the treatment of toxic epidermal necrolysis and Stevens-Johnson syndrome: A retrospective comparative study in China. Int J Dermatol 2009;48:1122-8.
- Yeong EK, Lee CH, Hu FC, M Z W. Serum bicarbonate as a marker to predict mortality in toxic epidermal necrolysis. J Intensive Care Med 2011;26:250-4.
- 43. Zhu QY, Ma L, Luo XQ, Huang HY. Toxic epidermal necrolysis: Performance of SCORTEN and the score-based comparison of the efficacy of corticosteroid therapy and intravenous immunoglobulin combined therapy in China. J Burn Care Res 2012;33:e295-308.

- Valeyrie-Allanore L, Wolkenstein P, Brochard L, Ortonne N, Maître B, Revuz J, *et al.* Open trial of ciclosporin treatment for Stevens-Johnson syndrome and toxic epidermal necrolysis. Br J Dermatol 2010;163: 847-53.
- 45. Kirchhof MG, Miliszewski MA, Sikora S, Papp A, Dutz JP. Retrospective review of Stevens-Johnson syndrome/toxic epidermal necrolysis treatment comparing intravenous immunoglobulin with cyclosporine. J Am Acad Dermatol 2014;71:941-7.
- 46. Giudice G, Maggio G, Bufano L, Memeo G, Vestita M. management of toxic epidermal necrolysis with plasmapheresis and cyclosporine A: Our 10 years' experience. Plast Reconstr Surg Glob Open 2017;5:e1221.
- Reese D, Henning JS, Rockers K, Ladd D, Gilson R. Cyclosporine for SJS/TEN: A case series and review of the literature. Cutis 2011;87:24-9.
- Singh GK, Chatterjee M, Verma R. Cyclosporine in Stevens Johnson syndrome and toxic epidermal necrolysis and retrospective comparison with systemic corticosteroid. Indian J Dermatol Venereol Leprol

2013;79:686-92.

- Santosh SK, Mohammad A, Mohan L, Gupta AK, Sushantika, Kumar N. Comparison of cyclosporine with systemic corticosteroid in Stevens-Johnson syndrome and toxic epidermal necrolysis - A pilot study. Int J Sci Stud 2018;5:34-8.
- ClinicalTrials.gov. Cyclosporine and Etanercept in Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis (NATIENS). NCT02987257; 2016. Available from: https://clinicaltrials.gov/ct2/ show/study/NCT02987257. [Last accessed on 2019 May 12].
- Barron SJ, Del Vecchio MT, Aronoff SC. Intravenous immunoglobulin in the treatment of Stevens-Johnson syndrome and toxic epidermal necrolysis: A meta-analysis with meta-regression of observational studies. Int J Dermatol 2015;54:108-15.
- Micheletti RG, Chiesa-Fuxench Z, Noe MH, Stephen S, Aleshin M, Agarwal A, *et al.* Stevens-Johnson syndrome/toxic epidermal necrolysis: A multicenter retrospective study of 377 adult patients from the United States. J Invest Dermatol 2018;138:2315-21.