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Most drugs used for leprosy treatment have low water 
solubility, which limits their bioavailability.14-16 Accordingly, 
administration of high doses required for reaching 
therapeutic blood levels aggravate adverse effects. Poor 
water solubility of these drugs may also result in their 
variable serum concentration, thus increasing the likelihood 
of bacterial resistance.17-19 Additionally, rifampicin and 
clofazimine bioavailability may be limited, respectively, 
by stomach degradation and recrystallization depending on 
pH.11,20,21 Unlike other drugs, minocycline is highly water 
soluble, its major limitation being intestinal permeability.22

New formulations have been proposed for leprosy therapy 
to address these problems. This article aims to highlight the 
recent advances in drug delivery systems, which may be 
utilized to overcome these hurdles.  

Innovative pharmaceutical strategies towards enhancement of 
therapeutic efficacy
Recent advances in drug delivery systems may overcome 
solubility impairment, common in pharmaceutical 
development.23 The oral formulations proposed for 
multidrug therapy drugs are focused on two main strategies: 
increasing the apparent drug water solubility or modifying 
the drug release.

Figure 1 summarizes the improvements and the expected 
results of multidrug therapy innovative formulations. In 
vitro evaluation, in vivo, and in silico performances of these 
preparations are provided in Table  1, if available, showing 
their potential therapeutic efficacy. As the following steps, 

Introduction
Leprosy is one of the oldest human epidemic diseases and is 
still endemic in some areas.1,2 The last WHO report, from 2018, 
counted 208,641 new cases globally, with India, Brazil and 
Indonesia concentrating approximately 80% (166,011) of 
them.2 Dapsone, rifampicin and clofazimine constitute the 
multidrug therapy, which has reduced new leprosy cases 
remarkably, since its inception in the 1980s.3-5 According to 
the clinical type of disease, treatment duration varies from 
6 to 12 months.6

Low adherence to therapy is one of the main hurdles for 
leprosy elimination as the disease requires prolonged 
treatment.7 A complex interplay of factors such as 
socioeconomic condition, inadequate healthcare service, and 
multidrug therapy underlie the poor adherence.7 Among the 
factors associated with multidrug therapy drugs, resistance 
and adverse effects are important.8-10 The first extensive study 
from endemic countries revealed that 8.0% of M. leprae 
strains underwent mutations, resulting in multidrug therapy 
resistance.9 However, a comprehensive study addressing 
drug adverse effects is still absent. Notably, a retrospective 
study from Brazil reported at least one adverse effect related 
to multidrug therapy in almost 37.9% patients.11

An alternative treatment to WHO-multidrug therapy consists 
of rifampicin, ofloxacin and minocycline, called ROM. This 
alternate regimen utilizes the bactericidal/bacteriostatic 
activity of both drugs, ofloxacin and minocycline.12 Although 
the resistance rate to ofloxacin (1.3%) is relevant, ROM-drugs 
usually present mild adverse effects.9,13
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well-established clinical tests will play a key role in ensuring 
their relevance for patients. Aiming to reach the market, 
a collaborative effort between government and private 
companies is essential.

Drug water solubility enhancement
For dapsone, innovative formulations obtained through 
synthesis of its chemical derivatives (salt and cocrystal) and solid 
dispersion were proposed to enhance water solubility.24-26 For 
example, solid dispersion increased water solubility by more 
than 7.5-fold, compared to free drug form.24 The improved 
bioavailability may reduce the therapeutic dose.

The solubility of rifampicin has been improved by using 
nanocrystals, solid dispersion, vesicle systems (liposphere, niosome 
and liposome), and complex preparations.20,27-33 Rifampicin 
nanocrystals enable 2-fold increase of drug concentration in 
a formulation. This innovative preparation halves the original 
intended dose.27 Apart from dose reduction, nanocrystals 
may increase permeation into intestine cells due to enhanced 
adherence.27 Rifampicin absorption may be reduced to half by 
food, which may also be mitigated by nanocrystals.27,34

Clofazimine innovative preparations include synthetic 
chemical derivatives (salt and complex) and nanotechnology-
based delivery (nanoparticle and nanoporous silica particle).35-38 
Amongst them, nanoporous silica particles increased its water 
solubility and intestinal permeability by 20-fold and 5-fold, 
respectively, compared to free-form.37 These modifications can 
significantly reduce the effective therapeutic dose.

The formulations proposed to enhance ofloxacin solubility 
are cocrystal and cyclodextrin complex.39,40 Initially, such 

formulations were developed for ophthalmic topical 
preparations. Minocycline does not present aqueous 
solubility issues,22 instead, newer strategies such as release 
modifications are aiming to improve its permeability.

Modified drug release
Modified release strategy aims to modulate drug release 
from the dosage form. For instance, enteric release is 
designed for intestinal drug delivery, protecting it from 
gastric pH. The extended-release formulations restrict drug 
delivery immediately following oral administration.29,30 The 
enteric release is especially relevant for rifampicin and 
clofazimine due to their chemical instability in acidic 
conditions.41,42

Dapsone modified-release was proposed using different 
strategies such as polymeric nanoparticles, hydrogels and 
nanofibers.43-45 In vivo results of polymeric nanoparticles 
demonstrated the sustained co-delivery of dapsone and 
clofazimine could reduce their doses.43 For rifampicin, 
strategies included nanoparticles (solid lipid, polymeric 
and lecithin), complex, and hydrogel beads.17,18,46,47 A 
formulation presenting an initial burst followed by sustained 
release is desirable, as observed in over 65% (4 of 6)  
(Table 1) of proposed rifampicin studies.46-49 Also, studies 
have shown favourable in vivo or in silico results. Among 
these, the increase in peak plasma concentration (Cmax) 
is up to seven times higher than the free drug,17,18 using 
solid lipid nanoparticle strategy.17 Furthermore, rifampicin 
plasma concentration was sustained above the minimum 
inhibitory concentration (MIC) for five days, compared to 
two days of free drug (Table 1). Thus, these formulations 
can reduce the dose and minimize adverse effects.17

Figure 1:  Innovative drug delivery systems formulations developed to overcome the main hurdles in the treatment of leprosy
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Table 1:  Innovative pharmaceutical preparations for solubility/drug release improvement of leprosy drugs (dapsone, rifampicin, 
clofazimine, ofloxacin and minocycline)

DS Innovative formulations In vitro evaluation (Drug release/Solubility 
assessment)

In vivo/in silico/in vitro performance Ref.

DAP Solid dispersion (SD) Drug release was nearly 1.9-fold compared to physical 
mixture and 7.5-fold compared to pure DAP (in first  
10 min).

– 24

DAP and 
CFZ

Polymeric nanoparticles Sustained release: after 24 h, 82% of DAP and 68% of 
CFZ.

NP was more effective than the same dose of 
the drugs.

43

DAP Cocrystal Best solubility achieved: 1.5 times, compared to pure DAP. – 26
DAP Hydrogel In the first hours, up to 5%, after 4 h 10% and sustained 

release (up to 20%) in the next 22 h.
– 44

DAP Nanofibers After 400 min, 77.71%, compared to 80.61% of DAP 
nanoemulsion.

– 45

DAP Salt and Eutectics Dissolution rate of salt nearly 2-fold and eutectics 1.7-
fold than pure DAP (in first 10 min).

– 25

RIF Solid lipid nanoparticles 
(SLN)

Drug release was 70.12% after 9 days while free RIF was 
more than 90% in 24 h.

In vivo studies: Cmax in plasma, SLN: 15.12 
µg/ml, Free RIF: 2.27 µg/ml. Relative 
bioavailability was improved 8.16 times 
(compared to free RIF), with sustained levels 
for 5 days.

17

RIF Particulate hydrogel beads Constant and sustained drug level throughout 24 h, with 
highest amount of drug released of 71.49%.

– 49

RIF Solid dispersion Drug release was 82.3%, compared to 32.7% of RIF 
powder (at 60 min, pH 6.8).

– 28

RIF Solid lipid nanoparticle 
(SLN)

85% within approximately 6 min at both pHs performed 
(1.2 and 6.8).

In vivo-in silico assessment: AUC and Cmax 
increased by 3.72 and 5.22-fold compared to 
the RIF suspension. GastroPlus™ predicted 
maximum compartmental absorption from 
proximal and distal portions of the intestine.

18

RIF Chitosan/gelatin/lecithin 
nanoparticles

Drug release was more than 3-fold up compared to free 
drug, at higher concentration of lecithin (2.0 g), in pH 7.2.

– 48

RIF Carboxymethylcellulose 
complex

Drug release was 99 ± 3% at 15 min, compared to 
two commercial medicines of less than 80% and 
approximately 90%.

– 33

RIF Phospholipid lipospheres The best formulation presented solubility of 350.9 ± 
23 μg/mL compared to 105.1 ± 12 μg/mL of pure drug.

Antimycobacterial activity enhanced compared 
to pure drug.
Peak plasma concentration (Cmax) was 109.92 
± 25 μg/mL compared to 54.31 ± 18 μg/mL 
of pure drug.
The AUC was 406.92 ± 18 μg h/L compared 
to 147.72 ± 15 μg h/L of pure drug.

29

RIF DIMEB complex Improved solubility, at pH 7.4, achieving the equilibrium 
in approximately 9 h.

– 20

RIF Solid lipid nanoparticles 
(SLN)

Biphasic profile: initial burst followed by sustained 
pattern (up to 90% drug in 120 h).

– 46

RIF Niosome Between 61.69% and 75.90%, compared to 32.43% of 
pure RIF (after the first 2 h).

– 30

RIF Co-polymeric nanoparticles 
(NP)

Solubility improved 65-fold compared to pure drug. 
Controlled release achieving up to 70 h, compared to 6 h 
of pure drug.

– 47

RIF Niosome Achieving 80% of drug release compared to 40% of pure 
drug, over 12 h.

– 31

RIF Liposomes Drug release achieved 95% released after only 5 h, 
compared to nearly 70% of free drug.

– 32

RIF Nanocrystals Nanocrystals showed up to 1.74-fold on solubility 
compared to commercial product.

– 27

CFZ Alginate-mediated carrier The release rate decreases upon increasing alginate 
concentrations.

– 58

CFZ Complex formation Increased approximately 0.53-fold of the maximum 
solubility compared to CB[7].

The analysis of MIC50 between complex and 
free drug did not show significant statistical 
difference.

38

(Contd...)
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nanoparticles, alginate, pepsin and mesoporous silica are 
examples of carriers developed to modify the release of 
clofazimine.37,42,56-58 Polymeric nanoparticles ensured sustained 
release and lower cellular toxicity in Caco-2 and HT29-MTX 
cells, compared to free drug. Thus, these studies corroborated the 
success of this strategy to avoid clofazimine recrystallization.42

Strategies for ofloxacin included cellulose conjugate, 
nanofibers, polymeric complex and nanoparticles.59-63 In vivo 
studies using nanofibers depicted its role as ofloxacin reservoir, 
increasing its residence time in the gastrointestinal tract. 
Besides, an in vitro study showed significant mucoadhesion 
using a strip of rat’s gastric mucosal membrane and improved 
efficacy against micro-organisms, such as E. coli, E. faecalis, 

Nano-based drug delivery systems have been approved 
by regulatory agencies and prescribed in the last decades, 
reinforcing their efficacy and safety.50,51 For instance, 
liposomal amphotericin B (AmBisome®) has been used to 
treat leishmaniasis successfully.52 Nevertheless, the particle 
size and shape can impact the nanoparticle distribution.53 For 
example, nanorods may accumulate in organs related to 
immune response and blood clearance, such as lymph nodes, 
spleen, liver and bone marrow.54 Consequently, risk assessment 
and quantification methods have been increasingly explored 
aiming to evaluate nanomedicine effects for patients.54,55

Clofazimine, in turn, can recrystallize outside a pH range 
of 2–4, thereby compromising absorption.56 Polymeric 

Table 1:  (Continued)

DS Innovative formulations In vitro evaluation (Drug release/Solubility 
assessment)

In vivo/in silico/in vitro performance Ref.

CFZ Nanoporous silica particles Solubility was increased by 20-fold in simulated gastric 
fluid.

Permeation studies (using Caco-2 intestinal 
cells) showed more than 5-fold increased 
intestinal permeation in comparison to the free 
drug (below the detection limit).

37

CFZ Enzyme-mediated carrier Only CFZ binded to pepsin remains in solution in the 
intestinal environment (pH~5.4)

– 56

CFZ Polymeric nanoparticle Sustained pattern, about 30% at the end of the experiment 
(buffer solution - pH 6.8 for 8 h, at 37°C).

– 42

CFZ Mesoporous silica particles 
(MPS)

At pH 4.1, maximum of 29% for ho-MSP (more 
hydrophobic) and 46% for hi-MSP. At pH 6.8: rapid 
release from hi-MSP, with 2 times higher initial release, 
compared to ho-MSP. However, both released nearly 10%.

– 57

CFZ Nanoparticle (NP) The NP, mainly in presence of fat, was faster dissolved 
compared to drug substance or to Lamprene®.

36

CFZ Salt Improvement of 5-fold on solubility compared to the  
free drug.

– 35

OFL Cocrystal salt After 1h, the amount of dissolved from cocrystal was 
more than 3-fold, compared to pure drug.

– 39

OFL Inclusion complex Solubility increased 3.7-fold compared to pure drug. – 40
OFL Nanoparticle cellulose 

conjugates
Nanoparticles showed sustained release proved in a 
pharmacokinetic study.

AUC was 1.6–2.3 times higher than controls 
rabbits.

59

OFL Nanofibres Initial rapid release (>50% of drug released within 4 h), 
followed by a slow and sustained release phase.

Enhanced in vitro antimicrobial activity, and 
in vivo mucoadhesion and gastro-retention in 
rats.

60

OFL Polymeric complex Release of 45–57% in 50 h. Formulations demonstrated activity against 
M. tuberculosis in in vitro microbiological 
studies.

61

OFL Nanoparticle (NP) Maximum drug release of 76% observed after 18 h  
(ph 2.2).

Proven antibacterial activity against E. coli. 62

OFL PEGylated nanoparticle 
(NP)

The best nanoparticles obtained released 96% of OFL in 
36 h. Free drug was released 100% in less than 4 h.

Better bactericidal activity compared to free 
drug. And inhibition of Bacillus subtilis 
resistance.

63

MINO Hydrogel Initial burst release with subsequent release control, 
achieving 100% only after more than 48 h.

– 64

MINO Nanoparticle Drug release achieved nearly 90% only after more than 
10h. Free drug achieve the same percentage within 1 h.

Antimicrobial activity was comparable to the 
free drug.

65

MINO Solid lipid nanoparticle 
(SLN)

In vitro release was kept continuous during 7 days. SLN was twice as efficient as free drug, in 
animal tests.

66

MINO Polymeric nanoparticles The NP presented an initial burst during 24h and a linear 
release over 30 days, compared to more than 98% within 
two days of free drug.

– 67

DS: Drug substance; Ref: References; DAP: Dapsone; RIF: Rifampicin; CFZ: Clofazimine; OFL: Ofloxacin; MINO: Minocycline; h: hours; AUC: Area under the 
curve; DIMEB: Heptakis(2,6-di-O-methyl)-β-cyclodextrin
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S. aureu, and P. aeruginosa. Therefore, these studies represent 
advanced formulations with a better oral absorption profile in 
leprosy treatment.60

Formulations containing minocycline were mainly developed 
for topical application, focused on periodontal diseases. 
However, the modified release approach might be considered 
to overcome its permeability issue. Hydrogel, nanoparticles, 
solid lipid nanoparticles and polymeric nanoparticles have 
been proposed to achieve this goal.64-67

Conclusion
Leprosy elimination involves a series of treatment-related 
challenges, leading to poor patient adherence. The multidrug 
therapy drugs are distributed free of charge; however, their 
low water solubility, severe adverse effects and resistance 
potential limit treatment completion. Innovative drug delivery 
systems are being proposed to overcome these limitations, 
involving two main targets: water solubility improvement 
and sustained drug release. Enhanced solubility may reduce 
the administered dose to patient, thus minimizing adverse 
effects. A modified drug release approach may increase dose 
interval, reducing the occurrence of bacterial resistance and 
adverse effects. These modifications may improve patient 
adherence to treatment, diminishing bacillary spread by 
untreated patients. A reinvention of leprosy treatment may 
promote patient healing and interrupt transmission, two 
essential goals towards a leprosy-free world.
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