Letters to the Editor

ErbB2: Nonimmune genetic key to leprosy

Sir,

I read with interest, the article titled "Ligand-binding prediction for ErbB2, a key molecule in the pathogenesis of leprosy" in the January 2008 issue of IJDVL.^[1] It illustrates the growing importance of structural bioinformatics in clinical medicine and drug discovery. However, the use of the term 'ligand' in place of 'ligand-binding site' in the article could be misleading. A ligand is a molecule that is able to bind to and form a complex with a biomolecule to serve a biological purpose. Bioinformatics tools like Q-Site finder^[2] predict putative binding sites within biomolecular structures after excluding bound ligands. ErbB2 has no known ligands^[3] (unlike other ErbB receptors) and signalling is mediated through heterodimerization with ErbB3 or homodimerization with another ErbB2 (proposed mechanism of signalling in leprosy).^[4] Docking studies and

virtual high-throughput screening techniques are needed to identify unknown ligands (potential drug candidates) for ErbB2.^[5]

Only extracellular *Mycobacterium Leprae* utilizes ErbB2 for downstream extracellular signal-regulated kinase (ERK) activation.^[6] In contrast, lymphoid cell kinase (p56Lck) has been found to activate ERK 1/2 directly through a PKC ε -dependent (Protein Kinase C ε), MEK-independent (MEK = MAPK/Erk kinase; MAPK = Mitogen-activated protein kinase) pathway in intracellular *Mycobacterium leprae*.^[7] Hence, ErbB2 inhibitors are unlikely to have a huge impact on leprosy therapeutics.

ErbB2 is a membrane protein with an extracellular region comprised of four domains, a single transmembrane helix and an intracellular region with a tyrosine kinase domain.^[8] The structure (PDB: 2A91) used in the study, is a truncated one with three domains and 510 residues.^[9] The structure of the entire extracellular region of ErbB2 bound to herceptin is available in PDB: 1N8Z.^[10]

There is strong epidemiological evidence that genetic factors influence susceptibility to leprosy *per se* and to the leprosy type. Majority of the genes implicated in susceptibility to leprosy are immunity-related such as tumor necrosis factoralpha (TNF- α) and interleukin (IL)-10.^[11] A recent study of the spatial structure of the transmembrane domains of dimerized ErbB2 identified certain single-nucleotide polymorphisms (SNPs) which can excessively stabilize dimeric ErbB2 leading to spontaneous signalling.^[12] Although the obvious relevance is its oncogenic potential, the possibility of a similar nonimmune mechanism that increases the susceptibility to leprosy, cannot be overlooked.

> Bell Raj Eapen Specialist Dermatologist, Kaya Skin Clinic, Dubai, UAE

Address for correspondence: Dr. Bell Raj Eapen, Kaya Skin Clinic, Dubai, UAE. E-mail: webmaster@dermatologist.co.in

REFERENCES

- 1. Wiwanitkit V. Ligand-binding prediction for ErbB2, a key molecule in the pathogenesis of leprosy. Indian J Dermatol Venereol Leprol 2008;74:32-4.
- 2. Laurie AT, Jackson RM. Q-SiteFinder: An energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 2005;21:1908-916.
- Yarden Y. The EGFR family and its ligands in human cancer signalling mechanisms and therapeutic opportunities. Eur J Cancer 2001;37:S3-8.
- 4. Tapinos N, Ohnishi M, Rambukkana A. ErbB2 receptor

Indian J Dermatol Venereol Leprol | May-June 2008 | Vol 74 | Issue 3

tyrosine kinase signaling mediates early demyelination induced by leprosy bacilli. Nat Med 2006;12:961-6.

- 5. Taylor P, Blackburn E, Sheng YG, Harding S, Hsin KY, Kan D *et al.* Ligand discovery and virtual screening using the program LIDAEUS. Br J Pharmacol 2007;152:S55-67.
- 6. Noon LA, Lloyd AC. Treating leprosy: An Erb-al remedy? Trends Pharmacol Sci 2007;28:103-5.
- Tapinos N, Rambukkana A. Insights into regulation of human Schwann cell proliferation by Erk1/2 via a MEK-independent and p56Lck-dependent pathway from leprosy bacilli. Proc Natl Acad Sci USA 2005;102:9188-93.
- Bagossi P, Horvath G, Vereb G, Szollosi J, Tozser J. Molecular modeling of nearly full-length ErbB2 receptor. Biophys J 2005;88:1354-63.
- 9. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, *et al.* The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 2003;11:495-505.
- 10. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, *et al.* Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 2003;421:756-60.
- 11. Moraes MO, Cardoso CC, Vanderborght PR, Pacheco AG. Genetics of host response in leprosy. Lepr Rev 2006;77: 189-202.
- 12. Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, *et al.* Spatial structure of dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J Biol Chem 2008;283:6950-6.