References

- 1. Blechman AB, Cabell CE, Weinberger CH, Duckworth A, Leitenberger JJ, Zwald FO, *et al.* Aggressive skin cancers occurring in patients treated with the Janus kinase inhibitor ruxolitinib. J Drugs Dermatol 2017;16:508-11.
- Rastrelli M, Ferrazzi B, Tropea S, Costa A, Finotto S, Marino D, et al. Aggressive Merkel cell carcinoma after Janus kinase inhibitor ruxolitinib for polycythemia vera. *In Vivo* 2019;33:1667-9.
- Fabiano A, Calzavara-Pinton P, Monari P, Moggio E, Pellacani G, Manganoni AM, *et al.* Eruptive squamous cell carcinomas with keratoacanthoma-like features in a patient treated with ruxolitinib. Br J Dermatol 2015;173:1098-9.
- 4. Tetzlaff MT, Curry JL, Ning J, Sagiv O, Kandl TL, Peng B, *et al.* Distinct biological types of ocular adnexal sebaceous carcinoma:

HPV-driven and virus-negative tumors arise through nonoverlapping molecular-genetic alterations. Clin Cancer Res 2019;25:1280-90.

- Stagner AM, Afrogheh AH, Jakobiec FA, Iacob CE, Grossniklaus HE, Deshpande V, *et al.* p16 expression is not a surrogate marker for high-risk human papillomavirus infection in periocular sebaceous carcinoma. Am J Ophthalmol 2016;170:168-75.
- Misago N, Mihara I, Ansai S, NarisawaY. Sebaceoma and related neoplasms with sebaceous differentiation: A clinicopathologic study of 30 cases. Am J Dermatopathol 2002;24:294-304.
- Miura-Karasawa M, Toshida H, Ohta T, Murakami A. Papilloma and sebaceous gland hyperplasia of the lacrimal caruncle: A case report.Int Med Case Rep J 2018;11:91-5.
- Devins KM, Tetzlaff MT, Baloch Z, LiVolsi VA. The evolving landscape of HPV-related neoplasia in the head and neck. Hum Pathol 2019;94:29-39.

Lichen nitidus in a child receiving adalimumab for juvenile idiopathic arthritis

Sir,

The use of biological agents to block specific immune system targets has been associated with onset or worsening of both organ-specific and systemic inflammatory conditions. Lichen planus and other lichenoid reactions have been reported occasionally in patients receiving antitumor necrosis factor- α agents.¹ We report the first case of lichen nitidus in a child receiving adalimumab for juvenile idiopathic arthritis.

A 9-year-old boy, receiving adalimumab for juvenile idiopathic arthritis, presented with mildly pruritic skin lesions for last 1 year. Medical history was significant for oligoarticular juvenile idiopathic arthritis since 2 years age. Previous therapies included methotrexate and etanercept, none being effective. Treatment with adalimumab, started 6 months prior to skin eruption, achieved an excellent control of joint disease.

A detailed physical examination revealed multiple shiny, skin-colored, flat-topped papules measuring up to 2 mm in diameter, predominantly affecting the trunk and the extremities [Figures 1a and b]. Lesional histology demonstrated epidermal thinning and thickened papillary dermis with intense lymphocytic infiltration embraced by rete ridges, consistent with the typical 'ball-claw' sign [Figure 2]. Thus, we made a diagnosis of lichen nitidus. We prescribed topical methylprednisolone to obtain partial improvement. A year later, our patient developed an upper-tract respiratory infection, and adalimumab was discontinued, resulting in complete resolution of skin lesions by 4 weeks. After 2 months, adalimumab was restarted and a second episode of lichen nitidus developed with subsequent injections. Two years later, adalimumab was suspended due to stability of joint disease, and lichen nitidus resolved again. A joint relapse warranted re-introduction of adalimumab, leading to a third episode of lichen nitidus. Treatment with topical steroids achieved complete remission of skin lesions.

Lichen nitidus is a relatively uncommon, asymptomatic or mildly pruritic, chronic eruption, characterized by pinpoint, skin-colored or pinkish papules. It is frequently seen in children and young adults with male predilection (4:1). Its pathogenesis remains unclear, but immunological and genetic factors have been proposed. A generalized variant has been reported in children with Down syndrome, Niemann-Pick disease, and other syndromes.²

Although a single case of lichen nitidus has been reported along with juvenile idiopathic arthritis, our case was unique as all three episodes showed temporal association with an anti-tumor necrosis factor- α agent, adalimumab,³ and drug withdrawl resulted in resolution of lesions on each occasion. This finding suggests a strong causal association between

How to cite this article: Munera-Campos M, Vicente A, Rosende L, Rovira C. Lichen nitidus in a child receiving adalimumab for juvenile idiopathic arthritis. Indian J Dermatol Venereol Leprol 2021;87:408-9.

Received: March, 2019 Accepted: June, 2020 Published: April, 2021

DOI: 10.25259/IJDVL_241_19 **PMID:** 33666045

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Figure 1a: Shiny, skin-colored, papules, affecting the trunk

Figure 1b: The extensor aspect of the limb

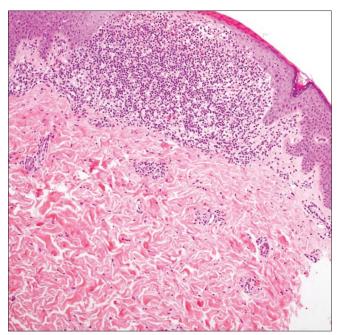


Figure 2: The typical ball-claw sign in biopsy (H and E, ×400)

adalimumab and lichen nitidus. Lichen planus and other lichenoid reactions have been reported with anti-tumor

necrosis factor- α agents.⁴ We hypothesized that adalimumab induced cytokine imbalance to be a triggering factor for lichen nitidus. The blockade of tumor necrosis factor- α results in excess interferon- α activity, which amplifies T-cell response by induction and overexpression of chemokine receptors like CXCR3, subsequently promoting T-cell migration to other tissues, especially skin.⁵

We were unable to find any previous report of lichen nitidus induced by tumor necrosis factor- α blockade with adalimumab. Blockage of specific immune targets may alter the cytokine milieu, resulting in inflammatory lichenoid reactions like lichen nitidus in predisposed individuals. A detailed review of symptoms, medication and comorbidities is mandatory in such patients. Further observations are needed to confirm this association.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent.

Financial support and sponsorship Nil.

Conflicts of interest

There are no conflicts of interest.

Mónica Munera-Campos, Asunción Vicente, Laura Rosende, Carlota Rovira¹

Departments of Dermatology and 'Pathology, Sant Joan de Déu Hospital, Universitat de Barcelona, Esplugues de Llobregat, Barcelona, Spain

Corresponding author:

Dr. Asunción Vicente, Department of Dermatology, Sant Joan de Déu Hospital, Universitat de Barcelona, Passeig de Sant Joan de Déu, 2, 08950 Esplugues de Llobregat, Barcelona, Spain.

avicente@sjdhospitalbarcelona.org

References

- Moustou AE, Matekovits A, Dessinioti C, Antoniou C, Sfikakis PP, Stratigos AJ. Cutaneous side effects of anti-tumor necrosis factor biologic therapy: A clinical review. J Am Acad Dermatol 2009;61:486-504.
- Lapins NA, Willoughby C, Helwig EB. Lichen nitidus. A study of forty-three cases. Cutis 1978;21:634-7.
- Bercedo A, Cabero MJ, García-Consuegra J, Hernado M, Yaez S, Fernández-Llaca H. Generalized lichen nitidus and juvenile chronic arthritis: An undescribed association. Pediatr Dermatol 1999;16:406-7.
- Asarch A, Gottlieb AB, Lee J, Masterpol KS, Scheinman PL, Stadecker MJ, *et al.* Lichen planus-like eruptions: An emerging side effect of tumor necrosis factor-alpha antagonists. J Am Acad Dermatol 2009;61:104-11.
- Aeberli D, Seitz M, Jüni P, Villiger PM. Increase of peripheral CXCR3 positive T lymphocytes upon treatment of RA patients with TNF-alpha inhibitors. Rheumatology (Oxford) 2005;44:172-5.