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Review Article

Abstract
Although malignant melanoma is not the most common type of skin cancer, it is the most aggressive and 
fatal type as it can spread out and metastasize progressively. Early diagnosis and interventions lead to 
improved patient survival. The incidence rate of melanoma is dramatically increasing, with a few newer 
therapeutic options available. Therefore, establishing a reliable genetic or epigenetic‑based diagnostic 
and prognostic tool is really important. In this review, we highlight the underlying epigenetic mechanisms 
involved in melanoma. Furthermore, the epigenetic‑based therapeutic options will be also discussed. 
One of the key areas of discussion will be microRNA which is a small, single‑stranded RNA molecule 
that serves as a regulatory element and found to regulate nearly a third of human genes. MicroRNAs 
play a role in a wide range of diseases including cancer. In malignant cells, it regulates cell proliferation, 
invasion, and metastasis.
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Introduction
There were more than 18 million cancer cases diagnosed 
worldwide in 2018.1 In India, melanoma is relatively rare and 
the commonest subtype seen clinically is the acral lentiginous 
type, while a mixed epithelioid and spindle cell type is 
histologically the most common type.2 Cancer arises due 
to accumulation of genetic and/or epigenetic mutations that 
force cells to undergo repeated, uncontrolled divisions.3 Skin 
cancers are one of the most prevalent groups of cancers—
the two broad groups being melanoma and non‑melanoma 
cancers.4-6 Melanoma is the 19th most commonly occurring 
cancer in men and  women, with about 300,000 new cases 
reported in 2018.7 Although melanoma accounts for a smaller 
percentage of all skin cancers when compared to non-
melanoma cancers, it is the cause for most skin cancer‑related 
deaths.8 Melanoma is a result of a combination of factors, 

including genetic and epigenetic changes.9,10 Several studies 
have revealed the role of epigenetic dysregulation in inducing 
melanoma. A robust association has been established between 
ultraviolet exposure and epigenetic alterations.10 It has been 
estimated that a 10% decrease in ozone levels will result in 
an additional 4,500 melanoma cases worldwide every year.11

Genetic causes of melanoma have been extensively 
investigated. It is well known that melanocytes originate 
from the neural crest and upon differentiation, it converts 
to melanoblasts.12 Activation of tumor protein p53 (P53), 
the genome guard, induces the biogenesis of melanosomes 
that help in protecting the skin.13 With prolonged exposure 
to ultraviolet radiation, DNA damage results in a missense 
mutation in P53 which is considered an initiating event in the 
melanoma cascade.
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Epigenetic Changes in Melanoma
Epigenetic  changes can regulate gene expression without 
affecting the corresponding sequence of DNA.14 These 
changes can affect not only DNA but also chromatin structure 
through posttranscriptional modifications of histone along 
with nucleosome remodeling. Non‑coding RNAs are also 
implicated in epigenetic‑based regulation of gene expression. 
These epigenetic changes play a central role in predisposition 
to several human diseases, including skin cancer by altering 
genes related to cell proliferation and apoptosis.14,15 A 
growing list of genes including, but not limited to, BRAF,16 
PTEN,17 MGMT18 and RARB19 are proved to be altered either 
genetically or epigenetically in melanoma. The fact that 
melanoma is controlled by a set of genes implies that treating 
this disease represents a challenge.

Genes hypermethylated in melanoma are presented in 
Table 1.20‑31

DNA Methylation in Melanoma
Cytosine DNA methylation is the most commonly studied 
epigenetic marker in the last three decades.32 In this process, 
DNA methyltransferase adds a methyl group using the 
S‑adenosyl methionine as a methyl donor. These methyl groups 
are added to the fifth carbon atom in Cs occurring in  cytosine 
phosphate-guanine (CpG) dinucleotides [Figure 1]. Methylation 
then recruits several proteins namely methylated DNA binding 
proteins (MBDs) that form a complex with histone deacetylases 
and chromatin remodeling factors resulting in a repressive 
chromatin status.9,33 However, cytosine methylation could be 
repaired by the dioxygenase family of  ten-eleven translocation 
methylcytosine dioxygenase (TET).34 These enzymes are 
unable to remove the methyl group from the cytosine residue, 
but instead, it hydroxylates the methyl group to form the 
5‑hydromethylcytosine.This can be further oxidized and finally 
removed by demethylation repair proteins.35,36 CpG dinucleotides 
are distributed in the human genome in a precise manner.37 It 
can either occur as a dinucleotide or in clusters known as CpG 

islands. These islands commonly reside upstream of the gene 
promoter, in the first exon, where it epigenetically regulates the 
expression of the genes it locates within.38,39 Normally, CpG 
islands are hypomethylated or even unmethylated, but as part 
of neoplastic transformation, these islands become methylated, 
and this is a hallmark of cancer initiation and/or progression.40 

CpG island methylator phenotype status could be used to 
classify melanoma patients and are also found to be highly 
associated with mutation in ARID2 and IDH1.41, 42 These genes 
are involved in chromatin remodeling. Both methylation and 
demethylation are securely orchestrated, where misregulation 
of either process results in dysregulation of cancer‑related gene 
expression can lead to cancer development.43 It is well known 
that hyper‑ and hypomethylation can lead to cancer, as these 
processes chiefly depend on the site in the genome where it takes 
place.44 Generally, cancer cells undergo hypermethylation in its 
tumor suppressor genes along with other regulatory genes. The 
hypermethylation occurs mainly in the promoter regions of the 
specified genes, where it, upon recruiting chromatin remodeling 
proteins, represses the transcription process.45 Another study has 
shown that dysplastic nevi are affected by promoter methylation 
of genes often methylated in melanoma. This is not the case 
with common nevi.46 DNA hypomethylation also is found to 
be associated with melanoma, and this hypomethylation might 
lead to genomic instability. Several studies have evaluated 
this phenomenon. A systematic review and meta-analysis 
by Guo et al. found up to 50 genes, associated with risk of 
melanoma, in the context of promoter methylation.6 Moreover, 
hypomethylation‑mediated inactivation of CLDN11 is reported 
in melanoma. Hypermethylation of tumor‑related genes such 
as RASSF1A,47 APC,48 DAPK49 HOXB13,50 MGMT,18 WIF1,51 
RARB,19 INK4A,52 SYK,53 TFPI241 and SOCS154 are found to 
be associated with advanced melanoma and poor prognosis. 
In addition, the methylation status of LINE1 could serve as a 
prognostic biomarker for cutaneous melanoma, where patients 
with hypomethylation in these repeats survive better than those 
with hypermethylation.55

Specifically, it has been indicated that   O-6-methylguanine-
DNA methyltransferase (MGMT) promoter methylation is 
associated with response to  dacarbazine/temozolomide (DTIC/

Figure 1: The mechanism of cytosine methylation. DNA methyltransferase 
adds methyl group to the fifth carbon atom of the cytosine residue exploiting 
S‑Adenosyl methionine as a methyl donor. TET processes this 5 mC further 
to finally remove the methyl group

Table 1: Representative genes hypermethylated in 
melanoma20-31

Gene name Function
PTEN Gene transcription silenced
p16 NRAS mutation associated
p14 Gene transcription decreased
RASSF1A Loss of expression
MGMT No correlation
LINE-1 Associated with metastasis
CLDN11 Inactivation of tumor-related gene
GPX3 Decreased expression in MM
MMP-9 Arrests cell cycle in G1 by inhibiting G1 cyclin-CDK
SOCS1 Linked to cadmium-stimulated cell growth
CDH1 Tumor suppresser gene
SOCS2 Control of actin-mediated cell motility
CDK: Cyclin-dependent kinase, MM: Malignant melanoma
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TMZ) in disseminated cutaneous melanoma,6 and this makes it 
a promising predictive marker for temozolomide therapy in a 
metastatic melanoma patient.56 Meanwhile, MGMT promoter 
methylation may frequently coexist with P53 mutation, and these 
patients may benefit from treatment with alkylating agents.57

DNA Methytransferase (DNMT) Mutation in 
Melanoma
DNMTs are a group of proteins that facilitate the insertion of 
a methyl group to the fifth carbon atom in cytosine. DNMTs 
are well‑characterized proteins, with specific function 
assigned to each member.58 DNMT1 maintains methylation 
patterns in the already‑methylated DNA.59 It works mainly 
in the replication fork using the hemimethylated parent 
as a template to methylate the newly synthesized DNA 
strand. Whereas DNMT3A and DNMT3B are involved 
in the de novo  methylation process in the previously 
unmethylated DNA.60 Moreover, the expression of these two 
enzymes is shown to be associated with overall survival in 
stage II melanoma patients.61 Using multivariate analysis, a 
study reported that the DNMT1 rs2228612 polymorphism 
is an independent predictor of poor overall survival in 
melanoma patients.9 Disease progression is found to be 
an independent prognostic factor in melanoma patients.62 
Polymorphisms related to DNMT are potential targets for 
new therapeutic approaches. It is reported also that DNMT3B 
plays a protumorigenic role in human melanoma, where the 
lack of this protein suppresses melanoma formation in a 
mouse melanoma model.63 Based on that, DNMT3 could be 
used as a biomarker for melanoma progression.

Histone Modifications in Melanoma
Histone is the core protein that plays a central role in terms 
of DNA organization in nucleosomes.64 Nucleosomes are the 
basic structural unit of the chromatin structure in eukaryotic 
systems.65 Histone is mainly characterized by the presence of 
N‑rich tail areas that are rich in positively charged lysine.66 
These tails undergo epigenetic modifications that include 
acetylation, methylation, phosphorylation, ubiquitination 
and  SUMO(small ubiquitin-like modifiers)-ylation.67 
These histone marks have been extensively studied, and 
its correlation with cancer formation is established. The 
most prominent histone modifications are acetylation and 
deacetylation, which are initiated by histone acetyltransferase 
and histone deacetylase proteins, respectively.68,69 These 
histone marks play a central role in the regulation of gene 
expression.70 Histone acetyltransferase adds acetyl group that 
neutralizes the positively charged histone leading to loosening 
the tight binding between DNA (the negatively charged) and 
histone.71 This action turns the closed heterochromatin to open 
euchromatin, allowing the accessibility of transcription factors 
and hence gene transcription. Histone deacetylase performs 
the opposite action, where it renders the open chromatin to 
a closed one, preventing the expression of the corresponding 
gene.72 If these actions take place in the promoter region of 
cancer‑related genes, the histone deacetylase activity can 

cause cancer to develop. Histone methylation also plays a 
crucial role in remodeling the chromatin and hence in the 
regulation of gene expression.73 This regulation is not only 
depending on the methylation but also the position (at which 
amino acid) and degree (number of methyl groups added) of 
methylation.74,75 For example, histone H3 trimethylation at 
lysine 9 (K9) is generally associated with closed chromatin and 
hence silencing of the corresponding gene, while mono‑ and 
dimethylation of the same lysine residue is associated with 
open chromatin that allows the activation of the corresponding 
gene.76 Furthermore, methylation of K4, K36 and K79 in 
H3 along with methylation of K20 in H4 is considered 
an active methylation tag that is associated with activated 
gene expression.77 It is well established that a modified 
histone is associated with melanoma, where hypoacetylation 
causes downregulation of p21Cip1 expression along with 
downregulation of the proapoptotic genes such as Bim, Bak 
and Bax.78 Meanwhile, histone methylation also has a role 
in melanoma development and progression.79 Upregulation 
of Ezh2 that functions to add triple methyl groups to the 
K27 in H3, leads to downregulation of p21Cip1 expression 
in human melanoma.80 Meanwhile, demethylating enzymes 
such as H3K4 demethylase JARID1B which demethylate 
lysine 4 at H3 have a crucial role in the development of 
melanoma.81 Furthermore, lysine‑specific histone demethylase 
demethylates histone 3 on K4 and K9 (H3K4 and H3K9).82 It 
eliminates two methyl groups from H3K4me2 resulting in the 
formation of H3K4me1/0. This H3K4me1/0 is a modification 
that tags enhancers in the human genome. It is reported that 
enforcement of the expression of LSD1 in vivo has promoted 
BRAFV600E‑driven melanomagenesis.83 On the other hand, 
downregulating LSD1 in malignant cells stimulates anti‑tumor 
T cell immunity and inhibits cellular proliferation. H3K27 
demethylase plays a vital role in transcriptional elongation 
and cell differentiation. Demethylating H3K27me3 leads to 
obliterate transcriptional repression caused by the H3K27me3 
mark. UTX, the H3K27‑demethylase, stimulates transcription 
in melanoma at sites where the promoters are tagged with 
trimethylated H3K27.84 In addition, H3K4me2 is detected 
with high rates in melanoma samples compared to healthy 
skin samples. This histone mark is found to be less prevailed 
in metastatic melanoma compared to the primary one.

MicroRNA and Melanoma
MicroRNAs are endogenous, non‑coding RNA transcripts 
of about 20‑22 nucleotides in length that are evolutionarily 
conserved, and function as regulatory elements.85 It is 
considered an epigenetic mechanism of gene expression 
regulation. Several types of microRNA dysregulation 
are found to be associated with the development and 
progression of melanoma  [Figure  2]. Furthermore, 
microRNAs could also be used as prognostic biomarkers. It 
has been indicated that microRNA‑211 is downregulated in 
melanoma cell lines, 86 where the ectopic expression of this 
microRNA significantly inhibited its growth and invasion, 
suggesting that it might possess a tumor‑suppressor 
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activity.87 Furthermore, this has been confirmed in 
a study that reported the location of microRNA‑211 
within TRPM1, a suppressor of melanoma metastasis.88 
Meanwhile, microRNA‑222 is found to affect c‑KIT and 
p27, disturbing the cell proliferation during melanoma 
progression. Metastasis of melanoma is further regulated 
by microRNA-205. MicroRNA-214 is found to interact 
with several tumor suppressor genes including ITGA3 
and TFAP2C, where it triggers melanoma progression via 
suppressing these genes.89,90 Cancer cells survival depends 
on the ability to handle microenvironment components.91 
One such important factor in the tumor microenvironment 
is hypoxia.92 MicroRNA‑210 expression inhibits MNT and 
enhances cell proliferation even in the lack of oxygen.93 
MicroRNA‑210 works also in the normoxic conditions, 
as it is upregulated in a HIF1α‑dependent manner, 
upregulating both ATF3 and BNIP3, which function to 
adapt the cells to hypoxic conditions.94,95

In addition, microRNA‑210 is detected in patients with 
metastatic melanoma.96 Inversely, microRNA‑33a/b and 
microRNA‑18b are found to target HIF1α, where their 
expression inhibits melanoma cell proliferation.97 Let7a 
has been reported to inhibit G6PD, IMPDH2, AASDHPPT, 
SCD and FASN, leading to induction of oxidative stress in 
melanoma cells.98 Malignant cells can maneuver to avoid the 
hypoxic conditions via inducing angiogenesis. In melanoma, 
this process is found to be regulated by several microRNAs 
including microRNA‑199a‑3p, microRNA‑1908 and 
microRNA‑199a‑5p.

Epigenetic‑based Therapy
The treatment of melanoma, including metastatic melanoma, 
has advanced in recent years with the development 
of newer groups such as BRAF, CTLA4 and PD1 
inhibitors.99 Notwithstanding the emergence of many new 
targeted therapies and immunotherapy drugs, tumor resistance 
to these new therapies represents a major hindrance, and 
hence, more efficient treatment strategies are the need of the 
hour. Several studies have been published in recent years to 
clarify the role of histone remodeling in cancer formation 

and progression. A  wide range of histone demethylase and 
deacetylase inhibitors are presented as potential melanoma 
treatment options.100 The recent understanding of the role 
of these enzymes specifies that they control the activation 
or repression of histone at the sites of the target genes. 
Histone deacetylase and histone acetyltransferase are among 
the proteins that were proposed as therapeutic agents for 
melanoma.101 These proteins are enrolled in the clinical 
setting under various commercial names. For example, H3K4 
and H3K9 demethylases have been used for this purpose.102 
Furthermore, JARID1 has been used in preclinical studies, 
and this might enhance its clinical utilization.103 Melanoma 
also could be treated with mitogen‑activated protein kinase 
inhibitors which increase the portion of JARID1B‑positive 
cells within the whole melanoma cell population.104 The main 
limitation of epigenetic‑based therapies for melanoma is that 
they are inherently not very specific in action. It is therefore 
important to classify these therapies according to the 
specific situation.105 Epigenetic‑based interventions can help 
improve the sensitization of tumor cells to immunotherapy. 
For example, the use of histone deacetylase is associated 
with the upregulation of targets associated with PD1 
checkpoint inhibitor therapy, which have been correlated to 
slower progression and better survival.105 One of the major 
advantages of epigenetic‑based therapies is based on the 
fact that epigenetic variation is more easy to be reversed 
as compared to genetic variations. However, the interplay 
between genetics and epigenetics must be explored in detail 
to formulate more effective treatment options.105

Conclusion
Epigenetic changes including histone modifications and 
DNA methylation play an essential role in the development 
of melanoma, and possibly even in its prevention and therapy. 
Reserving of DNA methylation status and induction of histone 
acetylation results in the activation of tumor‑suppressor 
gene and silencing of oncogenes, leading to control the 
proliferation of melanoma cells. Studies conducted at the 
epigenome level have partially demonstrated the function of 
clusters of histone‑like markers in skin cancer, although the 
understanding of tumors is still unclear. These studies reveal 
that in a particular area of ​​DNA, histone can be more active 
in regulating gene expression.

Epigenetic‑based therapies, although only in the initial 
stages of research, have potential in the treatment of 
melanoma, especially by increasing sensitivity of the tumor 
to immunotherapy. The relatively non‑specific action of 
epigenetic‑based therapies also necessitates the need to have 
more clarity regarding the type of treatment protocol to be 
used in a specific type of melanoma. More studies are needed 
to explore the interactions between epigenetic modifications 
and genetic variations in melanoma.

Furthermore, microRNAs represent a proven tool for 
diagnosis, prognosis, and even treatment of several types of 

Figure  2: Different microRNAs involved in melanoma initiation and 
progression
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melanoma. Clustered regularly interspaced short palindromic 
repeat/Cas9 is the newly emerging approach that has been 
employed to treat melanoma

There are some limitations regarding the use of 
epigenetic‑based therapy for melanoma. The most important 
drawback of using these drugs is its off targeting that might 
affect normal healthy skin cells along with cancerous cells. 
The main challenge here is to find drugs that target the 
affected tissues/cells without causing unwanted effects.
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