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Abstract
Numerous vaccines are being actively developed for use in dermatologic diseases. Advances in the fields of 
immunotherapy, genetics and molecular medicine have allowed for the design of prophylactic and therapeutic vaccines 
with immense potential in managing infections and malignancies of the skin. This review addresses the different vaccines 
available for use in dermatological diseases and those under development for future potential use. The major limitation of 
our review is its complete reliance on published data. Our review is strictly limited to the availability of published research 
online through available databases. We do not cite any of the authors’ previous publications nor have we conducted 
previous original research studies regarding vaccines in dermatology. Strength would have been added to our paper 
had we conducted original studies by our research team regarding the candidate vaccines delineated in the paper.
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Introduction
Vaccines are among medicine’s greatest achievements and most 
successful strategies to prevent diseases. Not only have they helped 
eradicate smallpox, but they also prevent around 2–3 million deaths 
every year from diphtheria, tetanus, pertussis and measles.1 The 
concept of vaccination entails improving immunity to a specific 
disease. This is accomplished by introducing a weak form of 
the disease‑causing agent, an antigen, which induces a specific 
immune response to produce specific types of antibodies. When the 
actual disease antigens are introduced to the body of a vaccinated 
individual, the pre‑formed antibodies produced in response to the 
vaccine are already present and they either prevent the disease 
from happening or help in diminishing the severity of the disease 
presentation.

The World Health Organization recommended, through its 
Expanded Program on Immunization in 1961, inclusion of vaccines 
for preventable diseases in the national health programs of 
countries. Since then, there was increasing worldwide recognition 

of the role of vaccines in limiting the spread of infectious diseases in 
the community. India, for example, has expanded its immunization 
efforts and has strategically introduced several new vaccines in its 
adopted Universal Immunization Program, with 42% of spending on 
routine vaccination being made by the Indian government itself.2,3. 
As a result, the under‑five mortality rate has dropped from 233 to 63 
per 1000 over the last 5 decades.

Due to the recent developments in the medical field, immunotherapy 
has not only played a pivotal role as a cost‑effective public health 
intervention for prevention of infectious diseases but also has 
surged as an attractive method aimed at treating and preventing 
other types of diseases, including malignancy, autoimmune 
disorders and allergies. In fact, the identification of specific 
antigens and immunological epitopes has allowed the creation of 
vaccines derived from multiple types of antigen sources including 
glycolipids, tumor‑associated antigens, dendritic cells, autologous 
and allogeneic peptide antigens.4 Such vaccines are actively being 
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developed and tested in multiple ongoing clinical trials to target a 
wide variety of diseases. This review aims at summarizing the use 
of vaccines in dermatological diseases.

Vaccines for Viral Infections Affecting the Skin
Skin infections are very common. Some are primary, such as herpes 
simplex virus, human papillomavirus, varicella/zoster or leishmanial 
infections. Other infections can have secondary skin manifestations 
such as measles, rubella, human immunodeficiency virus, cutaneous 
tuberculosis and Lyme disease.

Interestingly, the first vaccine (vaccinia‑cowpox) for immunization 
was developed to prevent smallpox, a highly contagious and fatal 
blister‑forming infection. The vaccine was introduced by Edward 
Jenner in 1798 and allowed the worldwide eradication of this deadly 
disease in 1980.5 The great success of this global immunization 
campaign led by the World Health Organization in 1967 urged 
researchers to develop further vaccines for both prophylaxis and 
treatment of certain diseases.

Human papillomavirus infection
Infection with high‑risk human papillomaviruses, particularly 
human papillomavirus types 16 and 18, promotes the development 
of genital warts and cervical, anal and oral cancers.6 This 
represents a substantial public health burden. Indeed, cervical 
cancer is a major cause of cancer deaths in women.7 Men are 
also at a risk of human papillomavirus‑associated verrucae and 
cancers, especially anal and penile cancer. The incidence of 
human papillomavirus‑associated genital cancers is particularly 
high in men who have sex with men, suggesting an acute need for 
prevention in this population.8

Three human papillomavirus vaccines are currently available. The 
bivalent/2vHPV vaccine (Cervarix) by GlaxoSmithKline protects 
against human papillomaviruses16 and 18. The quadrivalent/4vHPV 
vaccine (Gardasil) by Merck covers strains 6, 11, 16 and 18. Finally, 
the 9‑valent/9vHPV vaccine (Gardasil 9) by Merck produces 
immunity against human papillomavirus types 6, 11, 16, 18, 31, 33, 
45, 52 and 58. Any of these vaccines can be used in females.8‑10 
According to the Advisory Committee on Immunization Practices, 
it is recommended that females between ages 11 and 12 are 
vaccinated with three doses of the human papillomavirus vaccine. 
These can be given to females as young as 9 years and to those 
whose ages range between 13 and 26 as well who have not been 
previously vaccinated. There is no need to test by pap smear or 
human papillomavirus DNA or antibodies prior to vaccination. On 
the other hand, the American Cancer Society does not recommend 
routine vaccination for women older than 18 years because they are 
more likely to have been already exposed to human papillomavirus. 
Therefore, according to the American Cancer Society, this decision 
should be made on an individual basis. In addition, vaccination 
is also recommended below 26 years of age for men who have 
sex with men and immunocompromised individuals, including 
those with HIV infection, if they have not received the vaccine 
previously. At a population level, use of the 9vHPV vaccine was 
found to be more cost‑effective compared with 4vHPV for both men 
and women.8‑11 The human papillomavirus vaccines are generally 
well‑tolerated with the most common side effects, reported in up to 
50% of patients, being injection site pain, mild fever and injection 
site reaction.12 Table 1 includes the recommended immunization 
schedule for human papillomavirus vaccine with possible adverse 

events, and Table 2 shows the available human papillomavirus 
vaccines and their price.

Despite the benefits of the available human papillomavirus vaccines, 
controversy remains regarding whether their benefits outweigh the 
risks. This has led to resistance to implementation of these vaccines by 
some communities. Concerns about human papillomavirus vaccines 
have been led not only by people but also by some physicians and 
healthcare professionals. The most common reason lies in some 
studies that suggest mild documented adverse events with a positive 
risk‑benefit assessment against human papillomavirus vaccines.13‑15 
For example, a large systematic review, that included a total of 29, 
540 individuals, showed that pain, swelling and fever were the most 
frequently reported events, in addition to mild headache, fatigue 
and gastrointestinal symptoms.13 Interestingly, association between 
these vaccines and autoimmune manifestations has also been 
reported in some studies. However, recent reports have emphasized 
the importance of genetic background and previous history of 
adverse events to other vaccinations in developing autoimmune 
disease post human papillomavirus vaccination. Therefore, despite 
all the controversy, human papillomavirus vaccination remains the 
most effective way to prevent cervical cancer.13,14

In addition to such controversies, there are several limitations 
that limit the successful implementation of human papillomavirus 
vaccines, especially in developing countries. Such limitations 
include high vaccine costs, lack of public awareness about 
cervical cancer and about early screening and detection and most 
importantly the nature of human papillomavirus transmission, 
which carries the stigma of unacceptable sexual behavior. In many 
communities, not only is human papillomavirus vaccine expensive 
but promotion of human papillomavirus vaccines may be perceived 
by some as promotion of promiscuity. In India, for example, the 
introduction of human papillomavirus vaccine clinical trials was 
met with strong resistance from civil society organizations who 
expressed their worries to the Indian Government.16 Two important 
factors highly associated with increased acceptance of the human 
papillomavirus vaccine were community awareness of its benefits 
and understanding that all children are at risk regardless of religious 
or moral values. This emphasizes the importance of continuous 
efforts to break these barriers and to spread awareness of the 
importance of human papillomavirus vaccine in the prevention 
and control of communicable human papillomavirus infections and 
malignancies.17,18

While human papillomavirus vaccines resulted in significant 
achievement in terms of prevention of human papillomavirus 
infections and its associated diseases, there remains a great human 
papillomavirus‑associated disease burden worldwide. In fact, to 
date, it is estimated that 5 million women are infected with human 
papillomavirus worldwide that carry a risk for developing invasive 
cervical cancer. In India, for example, the annual incidence of cervical 
cancer is approximately 130,000 cases with 75–80,000 deaths, which 
makes about one‑fourth of the global cervical cancer burden. As a 
result, there is a need to develop therapeutic human papillomavirus 
vaccines for better control and eradication of existing human 
papillomavirus‑associated diseases.16‑18

Multiple types of therapeutic human papillomavirus vaccine 
candidates have been developed and are being tested in pre‑clinical 
studies and clinical trials. These include live vector, protein/peptide, 
nucleic acid and cell‑based vaccines. The rationale behind designing 
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these vaccines lies in targeting the E6 and E7 oncoproteins. These 
are constitutively expressed by human papillomavirus‑associated 
tumors and are important for the introduction and maintenance of 
cellular transformation by human papillomavirus‑infected cells 
and result in activation of cytotoxic T cells.19‑35 These vaccines 
have shown promising results in clinical trials involving patients 
with human papillomavirus‑related infections and malignancies. 
The vaccine candidate HPV‑16 SLP, for example, has been shown 
to be safe and highly immunogenic and resulted in significant 
enhancement of CD8 positive T cell response to E6 and E7 in 
patients with genital warts who were vaccinated as compared to 
placebo recipients.21,36 In addition to genital warts, therapeutic 
human papillomavirus vaccines candidates have been tested with 
mild success in human papillomavirus‑associated malignancies, 
including vulvar intraepithelial neoplasia and vaginal intraepithelial 
neoplasia. In a clinical trial by Baldwin et al., vaccination with 
therapeutic HPV vaccine (TA‑HPV) candidate resulted in 50% 
reduction in lesion diameter over a six‑month period in 5 out of 
12 patients, and one patient had complete response.21,36 Details 
regarding therapeutic human papillomavirus vaccine candidates are 
listed in Table 3.

Herpes simplex virus
Herpes simplex viral infections are some of the most ubiquitous 
of all infections, with prevalence in the United States ranging 
from 65% for herpes simplex virus‑1 and 16% for herpes simplex 
virus‑2.37,38 Prevalence varies among different countries. India for 
example, has herpes simplex virus‑2 infections ranging between 
11.4 and 28.82% in retrospective data analysis studies.39 Herpes 

simplex virus‑2 seroprevalence ranges between 43 and 83% among 
sexually transmitted diseases patients and between 7.9 and 14.6% 
in population‑based cross‑sectional studies. Herpes simplex virus‑1 
seroprevalence, on the other hand, ranges between 36.5 and 92.5% 
in cross‑sectional studies.40,41 Given that significant morbidity 
and mortality are associated with those viruses and that antiviral 
medication have a minimal impact on prevalence, numerous 
efforts have been made to develop an efficacious vaccine. Multiple 
strategies are being studied now for eventual development of a 
herpes simplex virus‑2 vaccine, especially that reducing genital 
herpes would be expected to reduce HIV spread.42

While no effective vaccines against herpes simplex virus infection 
are available yet, multiple vaccine candidates have been tested in 
the preclinical phase on animals and are being studied in clinical 
trials.37,43 Table 4 shows a list of herpes simplex virus vaccine 
candidates and their current developmental status.

To date, the largest clinical trial of a herpes simplex virus vaccine 
candidate was the Herpevac trial, which studied the efficacy of 
herpes simplex virus‑2 gD vaccine against herpes simplex virus 
disease in herpes simplex virus‑1 and herpes simplex virus‑2 
seronegative patients. Interestingly, the vaccine, which consisted of 
glycoprotein D from HSV‑2 with 3‑O‑deacylated monophospholipid 
A (MPL) adjuvant, provided 35% efficacy against herpes simplex 
virus‑1 disease and 58% efficacy against herpes simplex virus‑1 
genital disease, but was not efficacious against herpes simplex 
virus‑2 acquisition.44 Within the past 3 years, four additional 
herpes simplex virus vaccine candidates have entered into phase 

Table 2: List of available vaccines, their trade names and price*

Vaccine Trade name Manufacturer Price per dose, in Indian 
rupees (₹)

Price in 
USD ($)

References

MMR Morupar Sanofi Aventis 75 1.17 150‑152
Tresivac Serum Institute of India 

Limited
96.25‑140.75 1.5‑2.198

Trimovax Aventis Pasteur India 
Limited

72 1.12

Trimovax merieux Serum International 
Limited

70.6 1.10

Varicella Biovac V Wockhardt 1799 27.98 153
Varivax Merck and Co 1690 26.29
Varilrix GlaxoSmithKline 1560 24.26

HPV Gardasil, quadrivalent (HPV types 6, 11, 16, 
and 18)

Merck and Co 2975 46.28 152,154

Cervarix, bivalent (HPV types 16 and 18) GlaxoSmithKline 2190 34.07
Gardasil 9 (9‑valent) (HPV types 6, 11, 16, 
18, 31, 33, 45, 52, and 58)

Merck and Co Not yet licensed for import to India

MIP MIP Cadila Pharmaceuticals 
India Limited

Free of charge (NLEP, Government of India 
Funds, in addition to support from the WHO)

91,148,155,156

BCG Tubervac Serum Institute of India 
Limited

6 0.09 152

BCG Aventis Pasteur India 
Limited

25 0.39

Hepatitis B Biovac B Wockhardt 140 2.18 43
Engerix B GlaxoSmithKline 199 3.10
Enivac HB Panacea Biotec Limited 170 2.64

*The Price of the drugs indicated above may not match the actual price at which they are actually sold. It can also change depending on factors, including 
taxes. These are only approximate indicative prices of the vaccines. NLEP: National Leprosy Elimination Program, MMR: Measles‑mumps‑rubella, HPV: Human 
papilloma virus, MIP: Mycobacterium Indicus Pranii, BCG: Bacillus Calmette‑Guerin
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II trials as therapeutic vaccine candidates. These have novel 
adjuvants which stimulate T cell immunity. GEN‑003, a subunit 
vaccine consisting of glycoprotein D2 and Infected Cell Protein 
4 (GD2‑ICP4) with Matrix M adjuvant, showed a 50% decrease in 
genital HSV‑2 shedding rate after the therapeutic vaccine series.45‑47 
Another candidate was HerpV, a 32 peptides vaccine linked to 
heat shock protein and QS‑21 adjuvant. It showed a 15% decrease 
in viral shedding up to 6 months after the initial vaccine series.48 
VCL‑HB01/HM01, a plasmid DNA vaccine encoding glycoprotein 
D2 and Unique Long (UL)‑46 protein adjuvanted with Vaxfectin®, 
a lipid‑based formulation, has also shown a statistically significant 
reduction in genital lesion rate compared to baseline. Interestingly, 
HSV529, a live attenuated herpes simplex virus‑2 that is replication 
defective with deletion of UL‑5 and UL‑29 proteins, is currently in 
phase I trials and is being studied as both therapeutic and preventive 
vaccine candidate.49

On the other hand, several vaccine candidates are currently 
undergoing pre‑clinical experiments on animals, mostly mice 
and guinea pigs. These include Glycoprotein D2/Glycoprotein 
C2/Glycoprotein E2, HSV‑2 0 ΔNLS, HF10, ΔGlycoprotein 

D2, AD472, CJ2‑Gd2, Inactivated herpes simplex virus‑2 in 
MPL, HSV‑1 Glycoprotein B Lentiviral vector and Glycoprotein 
B1s‑NISV.50‑55 Details regarding these vaccines are delineated in 
Table 3.

Varicella‑zoster virus
Varicella‑zoster virus causes both varicella, also known as 
chickenpox, and herpes zoster, also known as shingles. Not only did 
the introduction of the varicella vaccine in 1984 lead to a marked 
decrease in the incidence of chickenpox and shingles but it also 
resulted in a significant drop in varicella‑related hospitalization 
to 14.5 per 100000 cases worldwide. In fact, the World Health 
Organization recommends that, in countries where varicella is an 
important public health burden, its vaccine should be introduced into 
their routine immunization programs. As a result, varicella vaccine 
was added to the immunization schedule by the Indian Academy of 
Pediatrics in 2011, and its incidence has dropped by almost 50%.56‑58

Table 1 includes the recommended immunization schedule for 
varicella vaccine with possible adverse events, and Table 2 shows 
the available varicella vaccines and their price. The immunization 

Table 3: List of therapeutic human papilloma viruses vaccine candidates

Vaccine category HPV vaccine candidate Vaccine platform Development status References
Live vector based 
(bacterial)

Lm‑LLo‑E7 prfA (the transcriptional activator of virulence 
genes)‑defective Lm strain transformed with plasmid 
encoding HPV‑16 E7 antigen fused to a fragment of 
nonhemolytic LLO

Phase I clinical trials 19

Live vector 
based (viral)

TA‑HPV Recombinant vaccinia virus (large, complex, enveloped 
virus belonging to the poxvirus family); encodes 
oncoproteins E6 and E7 of both HPV 16 and HPV18

Phase II clinical trials 20,21

TG4001 Recombinant modified vaccinia Ankara‑expressing HPV‑16 
E6, E7, and IL‑2

Phase I clinical trials 22

MVA E2 Recombinant modified vaccinia Ankara encoding E2 from 
bovine papillomavirus

Phase III clinical trials 23

Protein/peptide 
based

HPV 16‑SLP vaccine Combination of nine HPV‑16 E6 and four HPV‑16 E7 
synthetic peptides adjuvanated with Freund’s adjuvant 
(solution emulsified in mineral oil)

Phase II clinical trials 24

GL‑0810 HPV‑16 immunomodulatory peptide with adjuvant 
montanide and granulocyte macrophage colony stimulating 
factor

Phase I clinical trials 25

Pepcan + candin HPV16 E6 peptides combined with Candida skin testing 
reagent candin

Phase I clinical trials 26

GTL001 Recombinant HPV16 and HPV18 E7 proteins fused to 
inactive B. pertussis adenylate CyaA expressed in E. coli

Phase I clinical trials 27

TA‑CIN HPV16 E6/E7/L2 fusion protein Phase II clinical trials 28
TA‑CIN+TA‑HPV HPV16 E6/E7/L2 fusion protein and vaccinia virus with 

HPV16/18 E6/E7
Phase II clinical trials 29

Nucleic acid‑based pNGVL4a‑sig/E7 (detox)/
HSP70 + TA‑HPV

Plasmid encoding mutated form of HPV16‑E7 linked to 
sig and heat shock protein HSP70 and vaccinia virus with 
HPV16/18 E6/E7

Phase I clinical trials 30

pNGVL4a‑CRT/E7 (detox) Plasmid encoding mutated form of HPV16‑E7 linked to 
calreticulin

Phase I clinical trials 31

GX‑188E Plasmid encoding fusion protein of HPV 16/18 E6/E7 
linked to FMS‑like tyrosine kinase 3 ligand (Flt3L) and tpa

Phase I clinical trials 32

VGX‑3100 Mixture of two plasmids encoding optimized consensus of 
E6 and E7 antigen of HPV 16 and 18

Phase I and II clinical 
trials

33

Cell based DC + KLH DC pulsed with HPV‑16 and HPV‑18 E7 and KLH Phase I clinical trials 34
DC DC pulsed with HPV + tumor lysate Phase I clinical trials 35

HPV: Human papilloma virus LM: listeria monocytogenes, LLO: Listeriolysin O, SLP: Synthetic long peptide, IL: Interleukin, CIN: Cervical intraepithelial neoplasia, 
TA: Therapeutic antigen, KLH: Keyhole limpet hemocyanin, DC: Dendritic cells, MVA: Modified vaccinia virus, B. pertussis: Bordetella pertussis, E. coli: Escherichia 
coli, CyaA: Cyclase toxin, HSP: Heat shock protein
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schedule consists of a first dose at 12–18 months followed by a 
second dose between 4 and 6 years of age. The second dose can 
be administered 3 or more months following the first dose in 
children below 4 years of age.59 Breakthrough varicella is defined 
as chickenpox occurring more than 42 days after vaccination. It 
is manifested by atypical features with fewer and predominantly 
maculopapular lesions. This entity was initially reported in 2 to 4% 
of cases per year with a recently reported 14% cumulative incidence 
over 7 years. Interestingly, the time from varicella vaccination was 
the most important risk factor for breakthrough varicella.60

Measles‑mumps‑rubella
Another pivotal vaccine that prevents two dermatologic entities is 
the measles‑mumps‑rubella vaccine, which was combined in 1971.
Vaccination against measles led to a 75% decrease in deaths from 
2000 to 2013 according to the World Health Organization. As the 
vaccination programs got incorporated globally, the number of 
reported rubella cases decreased from 135,947 in 1998 to less than 
1,000 cases in 2003 according to the National Center for Infectious 
Diseases.61 Despite it being no longer endemically transmitted in the 
United States, rubella continues to be endemic in several parts of the 
world, and only two World Health Organization regions – European 
and American regions – have established rubella elimination goals 
for the year 2010.62 This emphasizes the need for accelerating 

measles‑mumps‑rubella vaccination campaigns in other areas such 
as south Asia. For example, a study from Jammu in India showed 
that 32.7% of girls aged between 11 and 18 were not immune to 
rubella.63

The measles‑mumps‑rubella vaccine can be administered 
in combination with varicella as a tetravalent vaccine, the 
measles‑mumps‑rubella‑varicella vaccine. Some reports showed 
an increased risk for febrile seizures with this combined vaccine, 
and thus preference was expressed for use of separate varicella 
vaccination only for the first dose.64 Although varicella is 
considered to be a benign disease, the burden of varicella with its 
associated morbidity and mortality, has proven the vaccine to be 
cost‑effective.65 The live zoster vaccine, Zostavax®, was approved 
in 2006 for prevention of shingles and post‑herpetic neuralgia in 
immunocompetent people aged more than 60 years.65 This vaccine 
contains 14‑fold more virions than the varicella vaccine.66 However, 
the efficacy of this live attenuated zoster vaccine was shown to 
decrease within 5 years’ post‑vaccination, mandating the need for 
proper patient education regarding its safety and efficacy. In general, 
the zoster vaccine is well‑tolerated causing minimal systemic side 
effects and mostly mild‑to‑moderate symptoms at the injection site. 
In addition, vaccinated individuals aged 60 to 69 years were shown 
to be more susceptible to such adverse events when compared to 

Table 4: List of herpes simplex virus vaccine candidates

Candidate Vaccine platform Target HSV Development status References
HSV‑2 Glycoprotein D Glycoprotein D from HSV‑2 with alum and 

3‑O‑deacylated MPL as an adjuvant
HSV‑1 (no efficacy 
against HSV‑2)

Phase III clinical trials, 
preventive

43,44

GEN‑003 Subunit vaccine: Glycoprotein D2 and (glycoprotein 
D2‑ICP4) with matrix M adjuvant

HSV‑2 Phase II clinical trials, 
therapeutic

45‑47

Herp V Peptides complexed with HSP with QS‑21 adjuvant HSV‑2 Phase II clinical trials, 
therapeutic

157

VCL‑HB01/HM01 Plasmid DNA vaccine encoding glycoprotein D2 and 
UL‑46 protein adjuvanted with Vaxfectin®, a lipid‑based 
formulation

HSV‑2 Phase II clinical trials, 
therapeutic

158

HSV529 Live, attenuated vaccine: HSV‑2 that is replication 
defective, with deletion of UL‑5 and UL‑29 proteins

HSV2 Phase I clinical 
trials, preventive and 
therapeutic

159

Glycoprotein D2/glycoprotein 
C2/glycoprotein E2

Subunit vaccine: Glycoprotein D2, C2, and E2 HSV1 and HSV2 Preclinical (studies on 
mice)

160

HSV‑2 0 ΔNLS Live, attenuated replication‑competent HSV‑2 with 
deletion of ICP 0

HSV‑2 Preclinical (studies on 
mice)

161

HF10 Live, attenuated replication‑competent mutant herpes 
simplex virus HSV‑1

HSV‑1 Preclinical 162

ΔGlycoprotein D2 Live, attenuated mutant herpes simplex virus HSV‑2 
with deletion of glycoprotein D2

HSV‑2 Preclinical 50

AD472 Live, attenuated recombinant herpes simplex virus 
HSV‑2 with deletion of gamma 34.5 gene and UL‑43.5, 
55 and 56 gene, and US‑10, 11 and 12 genes

HSV‑2 Preclinical (studies on 
guinea pigs)

51

CJ2‑Gd2 Live, attenuated recombinant herpes simplex virus 
HSV‑2 capable of expressing target antigens of HSV‑2 
specific CD8 T‑Cell response, including glycoprotein D2

HSV‑2 Preclinical 52

Inactivated HSV‑2 in MPL Formalin‑inactivated HSV‑2 HSV‑2 Preclinical (studies on 
mice)

53

HSV‑1 glycoprotein B 
lentiviral vector

Lentiviral vector expressing glycoprotein B1 HSV‑1 (with 
cross‑protection 
against HSV‑2)

Preclinical (studies on 
mice)

54

Glycoprotein B1s‑NISV Intranasal NISV containing recombinant HSV‑1 
glycoprotein B

HSV‑1 Preclinical (studies on 
guinea pigs)

55

HSV: Herpes simplex virus, MPL: Monophosphoryl lipid A, ICP: Infected cell protein, HSP: Heat shock protein, UL: Unique Long, NISV: Nonionic surfactant 
vesicles, US: Unique short, QS: Adjuvant protein, CD: Cluster of differentiation
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those aged 70 years or above.66 Table 1 includes the recommended 
immunization schedule for measles‑mumps‑rubella vaccine 
with possible adverse events, and Table 2 shows the available 
measles‑mumps‑rubella vaccines and their price.

Not only has measles‑mumps‑rubella vaccine proven to be efficacious 
in the prevention of measles, mumps and rubella, it also showed 
promising results when used for other diseases, namely recalcitrant 
warts and molluscum contagiosum. The hypothesis behind this was 
that it can result in induction of cellular immune response, which 
can accelerate the destruction of virus and virus‑infected host cells. 
Being recurrent and often resistant to treatment, warts represent a 
frustrating challenge for both patients and physicians. Studies have 
shown that intralesional immunotherapy by measles‑mumps‑rubella 
vaccine is a promising, effective and safe treatment modality 
for warts.67 Nofal et al. evaluated this vaccine in a randomized 
placebo‑controlled trial and noted complete response in 81.4% of 
patients as compared to 27.5% in the placebo group.68 Although 
we could not find clinical trials that study measles‑mumps‑rubella 
vaccine in molluscum contagiosum, we found two case reports in 
which successful treatment was reported.69

Human immunodeficiency virus
HIV had a prevalence of 0.8% in 2015 with 36.7 million people 
living with the virus worldwide.70 Ever since its identification as 
the cause of acquired immunodeficiency syndrome (AIDS) in 1984, 
significant advancement has been made towards its prevention 
and treatment. Interestingly, India, which has the third largest HIV 
epidemic in the world after South Africa and Nigeria, had a 32% 
decline in new HIV infections between 2007 and 2015.71 Despite 
this improvement, the quest for developing an HIV vaccine that can 
be therapeutic and preventive remains of significant importance to 
public health.

Although there is no Food and Drug Administration‑approved 
vaccine to date, multiple candidates have been studied in pre‑clinical 
experiments and clinical trials. The first HIV vaccine candidates 
consisted of recombinant subunit vaccines that mimic the viral 
envelope protein gp120 and its precursor gp160 in the hope that 
they would prevent HIV from entering human cells. These were the 
basis for the AIDSVAX vaccines. Two recombinant gp120 vaccine, 
bivalent subtype B/B and bivalent subtype B/E, could reach phase 
III clinical trials testing, but both failed to prove efficacious.72‑78 
Following the failure of recombinant envelope vaccines, attempts at 
developing vaccines that can induce immune responses that would 
achieve cross‑strains immunity began. These vaccines began with 
the replication‑defective recombinant Ad5 vector with HIV‑1 clade B 
gag/pol/nef inserts. It was designed to induce a CD8+ T‑cell response 
to HIV‑1 in the hope that immunity would be directed at conserved 
regions of HIV and would be effective against its different clades. 
While pre‑clinical studies showed promising immunogenicity, 
two phase II clinical trials, STEP and Phambili, were stopped 
after interim efficacy analysis. The STEP study, conducted among 
men who have sex with men, showed that vaccine recipients had 
an increased risk of HIV‑1 acquisition. Phambili, conducted in 
heterosexual adults, showed no vaccine effect on HIV acquisition 
during blinded follow‑up but increased risk of HIV‑1 acquisition 
during the unblinded follow‑up.76,77 Following the Adenovirus 
5 (Ad5) vector vaccine was the prime‑recombinant adenovirus type 5 
boost (DNA/rAd5) vaccine. It was designed to elicit HIV‑specific, 
multifunctional responses in CD4+ and CD8+ T‑cells and antibodies 
to envelopes of the major circulating strains. The vaccine is a 

6‑plasmid mixture encoding HIV envelope glycoprotein (env) 
from subtypes A, B and C and subtype B gag, pol and nef proteins, 
and rAd5 vector expressing identical genes, with the exception 
of nef. The HIV Vaccine Trials Network conducted a phase II trial 
of this vaccine in men or transgender women who have sex with 
men and showed lack of efficacy in reducing the rate of acquiring 
HIV‑1 infection (W).53 Interestingly, Canarypox ALVAC‑vCP1521 
vaccine is the only vaccine to date that has proven efficacious in 
reduction of HIV‑1 acquisition rates in both pre‑clinical studies and 
phase III clinical trials that are still ongoing.73,74 The RV144 trial, a 
multicenter, double‑blind phase III trial, demonstrated 60% efficacy 
over the first year compared with placebo.79 Although there is not 
yet a Food and Drug Administration‑approved HIV vaccine, these 
results are encouraging for the future development of a successful 
HIV vaccine.80

In addition to preventive vaccines, vaccine developers have recently 
experimented therapeutic vaccine candidates that can be used as 
adjunctive treatment to highly active antiretroviral therapy. Tat 
vaccine, which consists of antibodies against HIV‑1 transactivator 
of transcription (Tat) protein, have shown a statistically significant 
reduction of blood HIV‑1 DNA load that persisted for up to 
3 years post‑vaccination.81 Another therapeutic vaccine candidate 
was AGS‑004, which is a personalized vaccine consisting of 
patient‑derived dendritic cells and HIV antigens. It is currently 
being studied in phase II clinical trials.82 Table 5 shows a list of HIV 
vaccine candidates and their current developmental status.

Vaccines for Bacterial or Parasitic Infections Affecting 
the Skin
Propionibacterium acnes mediated acne vulgaris
The treatment of acne encompasses a wide variety of topical and 
oral agents ranging from antibiotics to retinoids. Interestingly, 
a research group from the University of California is currently 
investigating the use of vaccines for treating Propionibacterium 
acnes‑associated diseases including acne vulgaris. This stems from 
the idea that cell wall‑anchored sialidase of P. acnes or killed‑whole 
organisms of P. acnes have been shown to induce in‑vivo protective 
immunity against P. acnes along with downregulation of cytokine 
production.83 Multiple other vaccines are currently being developed 
based on killed pathogens, cell wall‑anchored sialidase, monoclonal 
antibodies to the Christie, Atkins, Munch‑Peterson factor of P. acnes, 
anti‑Toll‑like receptors and antimicrobial peptides.83

Mycobacterium leprae
Caused by the bacterium Mycobacterium leprae, leprosy affects the 
skin, nervous system, respiratory tract and eyes and can result in 
disfigurement and disability in advanced stages. Interestingly, 58% 
of new annual leprosy cases in the world are from India. According 
to the latest published annual report of the National Leprosy 
Elimination Program, a total of 86,028 leprosy cases were reported 
up until April 1, 2016 for the year 2015–2016 in India.84 While India 
has an ongoing national program for eradication of leprosy, the 
number of cases increased from 1,25,785 to 1,27,326 between 2014 
and 2015.84,85 Even though multidrug therapy is the gold standard 
for treating leprosy, the use of vaccines has been suggested as 
immune‑prophylactic and immunotherapeutic. M. leprae expresses 
a varied amount of surface‑associated and secretory proteins such 
as lipoproteins, outer membrane proteins and secretory proteins that 
may be utilized as antigenic targets in vaccine development. In fact, 
recent clinical trialists and vaccine developers have employed live 
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or killed whole mycobacteria, such as bacillus Calmette–Guérin, 
Indian Cancer Research Center bacilli and Mycobacterium w either 
alone or admixed with killed M. leprae.86 Interestingly, an Indian 
research group recently identified a penicillin‑binding protein, 
ML0018c, as a possible candidate which may elicit both cellular 
and humoral immune response in M. leprae‑infected patients. This 
protein can be used for the development of a peptide‑based vaccine 
conveying immunity against leprosy.87

A vaccine prepared from heat‑killed M. welchii has shown very 
promising results in leprosy prevention and treatment. The vaccine 
was initially developed in 1990s and consisted of heated M. welchii, a 
cultivable, non‑pathogenic and rapidly growing saprophyte. Clinical 
trials were initiated by the Indian Council for Medical Research 
institute in endemic areas in India, namely Madhya Pradesh, Orissa, 
Bihar, UP, West Bengal, Uttaranchal, Chhattisgarh and Jharkhand. 
Sharing a number of common B and T cell determinants with 
M. leprae, the vaccine significantly reduced the disease burden. 
Its efficacy was 70% tested over a 10‑year period. The vaccine has 
gained approval as a therapeutic and preventive vaccine against 
leprosy from the Drug Controller General of India (DCGI), Central 
Drugs Standard Control Organization, the National Regulatory 
Body under the Ministry of Health and Family Welfare in India and 
the US Food and Drug Administration. Its inclusion in the treatment 
regimen not only accelerates bacterial clearance but also shortens the 
recovery period and is effective in patients who are slow responders 
to multidrug therapy.84,88‑91

M. welchii vaccine was renamed M. Indicus Pranii (MIP). The new 
name was a combination of the site of isolation of the bacterial 
species from India (indicus), the founder of the National Institute 
of Immunology in India Professor Pran Talwar (pranii) and the 
National Institute of Immunology India (nii in pra‑nii). Globally, 
new case detection rates for leprosy have remained fairly stable in 
the past decade, with India responsible for more than half of the 
cases reported annually. However, the Indian government aims at 
eliminating leprosy by 2020.92 As a result, the National Leprosy 
Elimination Program initiated in August 2016 the Leprosy Case 
Detection Campaign aiming at detection of all leprosy cases in the 
community and their treatment. M. indicus pranii is being used to 
vaccinate contacts of leprosy patients, and, along with multidrug 
therapy, for the treatment of leprosy patients. This vaccine 

may prove to be India’s landmark step towards eradication of 
leprosy.87,93,94 Table 1 includes the M. indicus pranii vaccine as part 
of the immunization schedule with adverse events reported to date.

Lyme disease
Despite adequate clinical results, the only Food and Drug 
Administration approved vaccine for prevention of Lyme disease, 
LYMErix™, was withdrawn from the market 3 years after its 
initiation. This was mainly due to significant local effects at the 
injection site, 26.8% vs 8.3% in controls, as well as systemic 
symptoms, 19.4% vs. 15.1% in controls.95 In the absence of a Lyme 
vaccine, efforts are being tailored towards developing a reservoir 
targeted vaccine. Ongoing trials done over a period of 1 year and 
5 years have shown a reduction in Lyme disease prevalence ranging 
from 24 to 76%, respectively.96 In addition, adverse events to Lyme 
vaccines were mild and transient including local reactions such as 
swelling, redness and pain.96

Cutaneous leishmaniasis
Given that 90% of Leishmania infections present as a localized 
cutaneous reaction,97 dermatologists have sought after different 
treatment strategies for this mucocutaneous disease, including 
pentavalent antimonials, second‑line pentamidine, amphotericin 
B, allopurinol and ketoconazole. Studies in mice have highlighted 
the role of dendritic cells as important inducers of a T‑helper (Th) 
1/cytotoxic T (Tc) 1 protective immunity against leishmaniasis.97 
This fact has allowed the development of multiple experimental 
prophylactic vaccines, using dendritic cells pulsed with parasite 
lysate,98 recombinant parasitic proteins99 or even adjuvants such as 
CpG oligodeoxynucleotide motifs promoting IL‑12 release.99 One 
vaccine containing killed Leishmania amazonensis was shown to 
be safe in phase II clinical trials, however, did not demonstrate 
efficacy in phase III trials.100 The use of bacillus Calmette–Guerin 
vaccine for the treatment of cutaneous leishmaniasis has shown 
promising results in murine, canine and hamster models but is still 
in pre‑clinical studies.101

Cutaneous tuberculosis
Cutaneous tuberculosis is an infection caused by M. tuberculosis 
complex, M. bovis and bacillus Calmette–Guérin. It is characterized 
by numerous papulovesicular lesions, which can leave residual 
hypochromic scars upon healing. Bacillus Calmette–Guerin was 

Table 5: List of human immunodeficiency virus vaccine candidates

HIV vaccine candidate Vaccine platform Development status References
Recombinant gp 120 AIDSVAX
Bivalent subtype B/B
Bivalent subtype B/E

Two recombinant gp 120 surface proteins from different 
HIV‑1 strains

Phase III clinical trials, 
preventive (mid 1990s)

75

Ad5 vector Replication‑defective rAd 5 vector with HIV‑1 clade B 
gag/pol/nef inserts

Phase II clinical trials, preventive (step 
trial: 2004 and phambili trial: 2007)

76,77

DNA/rAd5 vaccine 6‑plasmid mixture encoding HIV env from subtypes A, B 
and C and subtype B gag, pol and nef proteins, and rAd5 
vector expressing identical genes, with the exception of nef

Phase II clinical trials, preventive 
(HVTN trials: 2010‑present)

78,163

Pox virus vector‑based vaccine: 
Canarypox ALVAC‑vCP1521 
vaccine

Live, attenuated nonreplicating poxvirus vector with 
genetically engineered genes encoding HIV1 env, gag, and 
pol proteins

Phase III clinical trials, preventive 
(RV144 trial: 2004‑2009)

119‑121

Tat vaccine Antibodies against HIV‑1 Tat protein Phase II clinical trials, therapeutic 
(passive immunization) (2008‑present)

81

AGS‑004 Personalized vaccine utilizing patient‑derived DC and HIV 
antigens

Phase II clinical trials, therapeutic 
(2012‑present)

82

HIV: Human immunodeficiency virus, Tat: Transactivator of transcription, env: Envelope glycoprotein, Ad5: Adenovirus 5, rAd5: Recombinant Ad5, 
DNA/rAd5: Prime‑rAd type 5 boost, HVTN: HIV Vaccine Trials Network
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initially introduced as a prophylactic agent against tuberculosis. 
The World Health Organization currently recommends that bacillus 
Calmette–Guerin vaccine should be administered to all those living 
in areas of endemic tuberculosis. In India, for example, the vaccine 
is part of the national immunization schedule and is administered 
directly after birth. Table 1 includes bacillus Calmette–Guerin as part 
of the Indian Academy of Paediatrics immunization schedule with 
possible adverse events, and Table 2 shows the available vaccines, 
their trade names and their price. Interestingly, it was noticed that 
the incidence of leprosy decreased markedly after administration 
of bacillus Calmette–Guérin vaccine, especially when used as an 
adjuvant to multidrug therapy in the treatment regimen compared to 
multidrug therapy alone.102

Owing to its beneficial effect in cutaneous tuberculosis and 
leprosy, which was most likely related to cell‑mediated immune 
response, interest rose in using bacillus Calmette–Guerin vaccine 
as a therapeutic agent in other skin conditions, including warts, 
cutaneous leishmaniasis and oral lichen planus.103 A total of 
122 patients have received intralesional bacillus Calmette–Guérin 
vaccine as a treatment of warts in all studies published to date. Only 
one study was a single‑blind, placebo‑controlled study conducted on 
154 patients divided into a control and placebo groups. Intralesional 
bacillus Calmette–Guérin vaccine proved to be an effective and 
safe modality for the treatment of viral warts. Most studies showed 
complete clearance of the warts within 6 weeks to 2.5 months.104 
Topical and intralesional bacillus Calmette–Guérin vaccine has also 
proven efficacious and safe in oral lichen planus when compared 
to triamcinolone. This suggests a possible role as a promising 
therapeutic alternative for erosive oral lichen planus, especially for 
those resistant to glucocorticoids.105

Vaccines for Treatment of Skin Malignancies
Melanoma
According to the National Cancer Institute, the incidence of 
invasive melanoma in the United States was estimated to be about 
73,870 cases in 2015, and one American dies of melanoma every 
hour. Melanoma treatment depends on the stage of the cancer. Early 
lesions (Stage 0 melanoma) are often cured by surgical excision 
alone. Stage II and stage III resectable melanoma are managed with 
surgery and lymph node resection. Stage III unresectable and stage 
IV are aggressively treated with chemotherapy, targeted therapy and 
recently immunotherapy.106 The 10‑year overall survival rate for 
advanced melanoma is improving but is still only 10–15%.107

The use of melanoma vaccines in the treatment of malignant melanoma 
is currently being intensely investigated. The use of such vaccines 
is reasonable given the antigenic differences between normal adult 
melanocytes and melanoma cells in addition to the resulting immune 
anti‑melanoma response triggered by immunocompetent cells.108 
Melanoma vaccines have utilized many antigen sources such as 
peptide antigens, glycolipids, tumor‑associated antigens and dendritic 
cells.4 Table 6 summarizes the different vaccines used in melanoma.

Experimental clinical trials with “melanoma vaccines” are currently 
in progress and few have shown significant benefit as adjuvants 
in the setting of high‑risk melanoma. However, ongoing trials 
have been more promising, especially with the advances in the 
immunology of melanoma. One recent study demonstrated higher 
response rates and longer progression‑free survival in advanced 
melanoma patients when gp100 vaccine was combined with 
interleukin‑2 (IL‑2) immune activating agent.109 The median overall 

survival was also longer in the gp100+IL‑2 group than in the IL‑2 
only group (17.8 months; 95% CI, 11.9 to 25.8 vs. 11.1 months; 
95% CI, 8.7 to 16.3; P = 0.06).109

Multiple types of antigen sources have been used in the production 
of melanoma vaccines including autologous/allogenic peptide 
antigens, glycolipids, tumor‑associated antigens and dendritic 
cells.4 Vaccines using tumor cell‑derived antigens are divided into 
two categories – autologous and allogeneic vaccines. In autologous 
vaccines, the patient’s tumor cells are used, thus providing a narrow 
antigen spectrum specific to a particular patient. Limitations to its 
use include limited amount of tumor tissue accessible for vaccine 
preparation, especially after complete resection of clinically evident 
disease. In a recent phase II clinical trial for metastatic melanoma, an 
autologous vaccine composed of tumor‑derived heat shock protein 
peptide complexes gp96 was shown to induce an anti‑melanoma, 
class I HLA‑restricted T‑cell‑mediated immune reaction in a 
proportion of treated patients. However, of the 28 patients enrolled, 
only two had a complete response and only three had stable disease 
at the end of follow‑up.110

Allogeneic vaccines may be more representative as they are 
composed of melanoma cells from other patients selected for a 
variety of shared antigens. Even though they may not contain all 
the tumor‑associated antigens on the treated patient’s tumor, they 
do allow for large‑scale randomized trials. One studied allogenic 
vaccine is Canvaxin polyvalent cancer vaccine. The cumulative 
data for Canvaxin therapeutic cancer vaccine represent the largest 
phase II clinical trial of any cancer vaccine. The vaccine exhibited 
prognostic significance for patients with stage III and IV melanoma. 
However, a phase III clinical trial for stage III unresected and stage 
IV melanoma showed unfavorable results.

Another category of vaccines is composed of cell surface glycolipids 
such as gangliosides GD3 and GM2.111 In a phase III clinical trial for 
stage II resected melanoma, adjuvant ganglioside GM2 vaccine was 
not shown to improve clinical outcome.112

In addition to the use of tumor cell‑derived antigens and 
gangliosides, tumor‑associated antigens have been integrated into 
vaccines and often combined with adjuvants such as GM‑CSF. 
Melanoma specific tumor‑associated antigens include Melan‑A/
MART‑1, gp100, tyrosinase, tyrosinase‑related protein‑1 (trp‑1) and 
tyrosinase‑related protein‑2 (trp‑2).113,114

Dendritic cells, being antigen‑presenting cells specialized for the 
induction of a primary T‑cell response, have also been explored for 

Table 6: Vaccines used for melanoma treatment

Vaccine Response
Autologous/allogenic 
peptide antigens

Showed unfavorable results in Phase II clinical trial 
for Stage III unresected and Stage IV melanoma

DC Clinical response only evident in a minority of 
metastatic melanoma patients

Tumor associated 
antigens

gp100 vaccine showed higher response rates and 
longer progression free survival when combined 
with IL‑2

Cancer causing 
viruses

Increased response rate was evident in a Phase III 
melanoma trial

Glycolipids GM2 vaccine shows no improved clinical response
IL: Interleukin, DC: Dendritic cells, GM: adjuvant Ganglioside
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manufacturing vaccines in advanced melanoma. Mouse studies have 
shown that dendritic cells do induce antitumor immunity, and thus 
multiple studies aimed at demonstrating the clinical effect of such 
vaccines on the survival of melanoma patients have been done.83 
However, one study showed that vaccinating with peptide‑loaded 
dendritic cells can result in long‑term clinical response in only a 
minority of metastatic melanoma patients (2 out of 15 patients).115 
In addition, a recent phase I/IIa clinical trial in stage IV melanoma 
using autologous tumor–dendritic cell fusion (dendritoma) 
vaccine with low‑dose interleukin‑2 showed that overall survival 
was significantly higher in the experimental group (23.8 versus 
8.7 months, P = 0.004).116

Another vaccine tested in melanoma is herpes simplex virus‑1 
oncolytic vaccine known as Talimogenelaherparepvec (T‑VEC). 
T‑VEC is designed to induce systemic antitumor immunity and was 
effective in increasing the response rate and survival (≥6 months) vs 
GM‑CSF in a phase 3 melanoma trial.117 A phase 1 trial studied its 
toxicity and showed that combining T‑VEC with Ipilimumab was 
tolerable and did not result in dose limiting toxicities (DLTs) but 
resulted in grade 3 or 4 adverse events in 32% of the patients. The 
adverse events included hypophysitis, adrenal insufficiency and 
diarrhea. Studies on T‑VEC suggest T‑VEC+ipilimumab is more 
effective than Ipilimumab alone.108

Advanced techniques using cDNA‑expression cloning and 
autologous antibodies have allowed for the identification of a wide 
array of antigens and peptides utilized in manufacturing melanoma 
vaccines. Further trials are imperative at this point to establish the 
therapeutic benefit of those vaccines in advanced melanoma as 
evidence so far is lacking.

Even though treating melanoma using a cancer vaccine is an 
ingenious approach, several challenges are arising with this 
strategy. So far, vaccines have been developed based on tumor 
antigens that are commonly overexpressed and shared across many 
patients and tumors. One challenge is to develop vaccines that are 
personalized to each patient, i.e. vaccines based on the antigens 
the tumor expresses in a particular patient. This approach will 
add more cost and time but might be more beneficial compared 
with the general vaccines. In addition, another challenge is to 
develop vaccines composed of nucleic acids that encode antigens. 
Developing vaccines based on these nucleic acids might allow 
more specific immune responses towards the tumor rather than 
normal tissue. It also allows for vaccinating against several antigens 
rather than one because of the ability to administer several nucleic 
acid sequences encoding different antigens. For example, a recent 
vaccine was developed composed of a nanoparticle containing 
tetravalent RNA sequences, each encoding a separate antigen, for 
the treatment of patients with malignant melanoma. The approach 
allows more efficient targeting of antigen‑presenting cells.118,119 
Despite the ambiguous clinical effectiveness of current melanoma 
vaccines, they are relatively safe in the management of malignant 
melanoma.120

Cutaneous T‑cell lymphoma
Primary cutaneous T‑cell lymphomas are defined as clonal 
proliferation of skin‑infiltrating T lymphocytes, which manifest 
initially in the skin. Cutaneous T‑cell lymphomas are generally 
incurable and therapeutic options are limited, especially in advanced 
stages. This lead to the development of various treatment strategies 
including attempts to vaccinate against the malignant tumor.121

Neoplastic T cells from cutaneous T‑cell lymphomas patients 
express tumor specific antigens that serve as the targets of an immune 
response. Thus, one possible vaccination modality is using whole 
tumor cells or tumor cells fused with dendritic cells to improve 
delivery to antigen presenting cells.122 Multiple investigated targets 
included cancer/testis antigens, anaplastic lymphoma kinase fusion 
proteins, and mimotopes.123 Vaccinations of few individuals have 
shown short partial remissions, but studies have not been published 
yet and further research is required.

Vaccines in Immunocompromised Individuals
The use of vaccines in immunocompromised individuals is relatively 
safe and effective. In fact, guidelines have recommended that 
HIV‑infected patients older than 18 years of age receive one dose of 
the 13‑valent pneumococcal conjugate vaccine (PCV13) followed by 
a booster vaccination with the pneumococcal polysaccharide vaccine 
(PPV23).124 Multiple vaccines are currently encouraged and considered 
safe in the immunocompromised such as the inactivated influenza 
vaccine in young children,125 the human papillomavirus vaccine,126 the 
live attenuated Oka zoster vaccine,127 whole‑virus cell culture‑derived 
H5N1 influenza vaccines128 and the heat‑treated zoster vaccine.129

However, there are a few exceptions that should be noted. First, 
the varicella vaccine is not recommended in immunocompromised 
individuals as such individuals may be unable to limit the replication 
of live attenuated vaccine viruses.130 Second, the use of replicating 
smallpox vaccines such as the LC16m8, licensed in Japan, should 
not be promoted given the limited data on safety and efficacy in 
immunocompromised individuals.131 If needed, the World Health 
Organization advisory group recommends use of a nonreplicating 
smallpox vaccine comprised modified vaccinia virus Ankara instead.

Currently studies are being designed to examine the potential role 
of a new vaccine against tuberculosis meningitis,132 brucellosis,133 
Candida albicans infection134 and Ebola virus135 in the 
immunocompromised population.

Vaccine‑Induced Dermatological Adverse Effects
Vaccines have been established to be significant contributors in the 
prevention and treatment of some dermatologic entities. However, 
just like any modality, their use has been associated with multiple 
cutaneous adverse effects.

Hepatitis B vaccine
Hepatitis B vaccination has been found to trigger an intense lichenoid 
reaction in one patient.136 In another case, lichen planus was induced 
by anti‑hepatitis B vaccination and was successfully treated with 
prednisone 1 mg/kg/day for 2 weeks.137 Infantile bullous pemphigoid 
has been reported in three infants following vaccination for 
diphtheria, pertussis, tetanus, poliomyelitis, hepatitis B, Haemophilus 
influenzae B and meningococcus C. However, the etiology remains 
uncertain. Systemic steroids when given led to resolution of lesions 
in 2–6 months for two infants, whereas high‑potency topical steroids 
were required for the third infant.138 Table 1 includes hepatitis B 
vaccine as part of the Indian Academy of Paediatrics immunization 
schedule with possible adverse events, and Table 2 shows available 
vaccines, their trade names and their prices.

Smallpox vaccine
A characteristic smooth scar develops following administration of the 
smallpox vaccine. Based on previous published reports, exaggerated 
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scarring, dermatofibroma and nevus sebaceous (Jadassohn tumor) 
have been described at the scar site.139

Bacillus Calmette–Guérin vaccine
Two case reports describe cutaneous M. bovis infection in two infants 
with immune disorders following the bacillus Calmette‑Guérin 
vaccination.140 Another nine case reports published in Japan describe 
atypical popular tuberculides after bacillus Calmette‑Guérin 
vaccination.141

Conclusion and Future Directions
Multiple vaccines are being actively developed for use in 
dermatologic diseases. Recent advances in the fields of 
immunotherapy, genetics and molecular technology have allowed 
for the design of prophylactic and therapeutic vaccines with 
enormous potential in the field of dermatology. Dermatologists 
should be aware of the availability and possible use of newer 
vaccines developed against acne, human papillomavirus, melanoma 
and other dermatologic disorders. Further studies are necessary 
to investigate the potential use and benefits of vaccines in the 
prevention of dermatologic entities such as invasive staphylococcal 
disease,142 Streptococcus pyogenes infections143 and scabies.144 
In the foreseeable future, the development of vaccines will rely 
more on supplying an RNA molecule instead of an antigen. This 
method can potentially enable a wide range of cells in our body to 
form a larger number of proteins and present them to the immune 
system in a more efficient way.145 Ongoing active research in 
vaccine development has opened a new promising era in the field 
of dermatology. However, many questions remain unanswered, 
e.g. whether such vaccines offer adequate clinical benefits or even 
convincing survival advantages.

Limitations
The major limitation of our review is its complete reliance on 
published data. Our review is strictly limited to the availability 
of published research online through available databases. Also, 
we did not cite any of our authors’ own publications nor have we 
conducted previous original research studies regarding vaccines 
in dermatology. Strength would have been added to our paper had 
we conducted original studies by our research team regarding the 
candidate vaccines delineated in the paper.
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