Stem cell therapy in dermatology

Sujay Khandpur, Savera Gupta, D. R. Gunaabalaji

Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India

Abstract

Stem cells are precursor cells present in many tissues with ability to differentiate into various types of cells. This interesting property of plasticity can have therapeutic implications and there has been substantial research in this field in last few decades. As a result, stem cell therapy is now used as a therapeutic modality in many conditions, and has made its way in dermatology too. Stem cells can be classified on the basis of their source and differentiating capacity. In skin, they are present in the inter-follicular epidermis, hair follicle, dermis and adipose tissue, which help in maintaining normal skin homeostasis and repair and regeneration during injury. In view of their unique properties, they have been employed in treatment of several dermatoses including systemic sclerosis, systemic lupus erythematosus, scleromyxedema, alopecia, Merkel cell carcinoma, pemphigus vulgaris, psoriasis, wound healing, epidermolysis bullosa and even aesthetic medicine, with variable success. The advent of stem cell therapy has undoubtedly brought us closer to curative treatment of disorders previously considered untreatable. Nevertheless, there are multiple lacunae which need to be addressed including ideal patient selection, timing of intervention, appropriate conditioning regimens, post-intervention care and cost effectiveness. Further research in these aspects would help optimize the results of stem cell therapy.

Key words: Dermatology, pemphigus, stem cell therapy, systemic lupus erythematosus, systemic sclerosis

Introduction

Stem cell therapy is a novel technique which had gained significant attention over the past years. The Nobel Prize in Physiology or Medicine 2007 was awarded jointly to Mario R. Capecchi, Sir Martin J. Evans and Oliver Smithies for their discoveries of principles for introducing specific gene modifications in mice by the use of embryonic stem cells.¹ Stem cells have been employed in broad therapeutic indications and as a consequence, the New Drugs and Clinical Trials Rules include "stem cell derived products" under the new drug section.² In dermatology, stem cell therapy has been tried in several refractory conditions with some success which has widened the therapeutic armamentarium. In this article, we aim to review the current status of stem cell therapy in dermatology.

Materials and Methods

A search for relevant literature in English language was conducted using PubMed, MEDLINE, Hindawi and Google Scholar. All publications up to 2019 were identified using the following key words: stem cell therapy, dermatology, hematopoietic, autologous and allogenic. All articles, including case reports, case series, randomized controlled trials and review articles on the use of stem cell therapy in various dermatological conditions, were considered and the results of the studies including the adverse effects were tabulated. We included articles related to clinical relevance of stem cells and stem cell therapy in dermatology. We excluded articles that were outside the domain of clinical dermatology, such as those on basic science of stem cells, veterinary dermatology and use of stem cells in other fields of medicine. The guidelines by European Group for Blood and Marrow Transplantation (EBMT), British Society of Blood and Marrow Transplantation (BSBMT), American Society for Blood and Marrow Transplantation (ASBMT) and Indian Council of Medical Research (ICMR) were compiled to give a comprehensive overview of indications and current status of stem cell therapy in dermatology. We were able to review

How to cite this article: Khandpur S, Gupta S, Gunaabalaji DR. Stem cell therapy in dermatology. Indian J Dermatol Venereol Leprol 2021;87:753-67

Corresponding author: Dr. Sujay Khandpur, Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India. sujay_khandpur@yahoo.com

Received: January, 2020 Accepted: January, 2021 EPub Ahead of Print: June, 2021 Published: October 2021

DOI: 10.25259/IJDVL_19_20 **PMID:** 34245532

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

© 2021 Indian Journal of Dermatology, Venereology and Leprology - Published by Scientific Scholar

about 110 articles on this subject which form the basis of this review article.

Principles of Stem Cell Therapy

Stem cells are undifferentiated cells present in different organ systems with the three hallmark characteristics of selfrenewal, differentiation and plasticity [Table 1].³ Stem cells are present in a specialized microenvironment called stem cell niche which functions as a unit to maintain homeostasis and repair tissues at the time of injury.⁴ Stem cells can be classified on the basis of their source and differentiating capacity [Table 2].⁵⁻⁷

Epidermal Stem Cells

In skin, stem cells are found in inter-follicular epidermis (keratinocyte), bulge of the hair follicle (keratinocyte, melanocyte and neuronal), sebaceous gland, dermal

Table 1: Defining characteristics of a stem cell ³			
Property	Definition		
Self-renewal	Ability to undergo numerous cycles of asymmetrical cell division to produce differentiated cells as well as cells that are similar to the parent cell, thereby maintaining the pool of undifferentiated cells		
Differentiation	Ability to differentiate into cells of the tissue in which stem cell is located		
Plasticity/trans- differentiation	Ability of adult stem cells to cross lineage barriers and differentiate into cells of tissue different from the original tissue		

papillae, dermis and subcutaneous tissue (mesenchymal). Melanocyte stem cells can be induced by ultraviolet radiation, laser, dermabrasion and drugs including tacrolimus, hence are used in re-pigmentation of vitiligo.⁸⁻¹³ Under normal circumstances, the stem cells from epidermis, hair follicle and sebaceous glands differentiate independent of each other. During injury, by virtue of plasticity, any stem cell from one location can give rise to whole cell lineage.¹⁴

Bone Marrow Stem Cells

Bone marrow contains hematopoietic and mesenchymal stem cells. The former can be derived from bone marrow and umbilical cord blood and are used in autoimmune disorders after immune ablation, deleting the self-reactive cells and repopulating with cells with improved self-tolerance. The hematopoietic stem cells can be derived from the same donor (autologous - as the loss of self-tolerance is at the peripheral blood level, but not the stem cell level as they are not involved in antigen recognition) or from an HLA matched donor (allogenic). Umbilical cord blood transplantation has few advantages over bone marrow transplant including lower incidence and lower severity of acute and chronic graftversus-host disease, lower risk of transmitting latent virus infections and elimination of clinical risk to the donor during hematopoietic stem cell procurement procedures. However, disadvantages include higher risk of graft rejection and delayed hematopoietic recovery after transplantation due to a reduced number of hematopoietic progenitor cells that can further contribute to serious infections.¹⁵

	Table 2	2: Classification of stem cells ⁵⁻⁷
	Classification	Description
Classification on the basis of differentiating capacity	Totipotent/omnipotent	The ability to differentiate into all possible cell types including placenta Cells produced by the first few divisions of the fertilized egg, known as morula cells, are totipotent
	Pluripotent	The ability of a stem cell to turn into all mature cell types of the body of all the three germ layers, except placenta Embryonic stem cells that are isolated from an early stage embryo, called blastocyst are pluripotent cells
	Multipotent	The ability to turn into more than one mature cell type of the body, usually a restricted and related group of different cell types E.g., hematopoietic (adult) stem cells that can become red and white blood cells or platelets Mesenchymal stem cells that can become a wide variety, but related group, of mature cell types (bone, cartilage, connective tissue, and adipose tissue)
	Oligopotent	The ability to differentiate into a few cells. Example: Adult lymphoid or myeloid stem cells.
	Unipotent	Can produce only one cell type Muscle stem cells
Classification on the basis of their source	Embryonic stem cell	Pluripotent stem cells present in the inner cell mass of blastocyst which are capable of producing all organs in human body except for placenta
	Somatic/adult stem cell	Somatic stem cells (multipotent or unipotent), with limited plasticity, present in many tissues including skin and bone marrow
	iPSC	Recently, the induced pleuripotent stem cells have emerged as a distinct variety. They are produced by reprogramming of somatic cells into pleuripotent state by genetic engineering. These stem cells can be induced to form various types of differentiated cells

iPSC: Induced pleuripotent stem cells

Mesenchymal stem cells are multipotent adult stem cells derived from almost all tissues including bone marrow, umbilical cord, peripheral blood, skin, foreskin, fallopian tube, lung, fetal tissue, placenta, adipose tissue or amniotic fluid. In contrast to hematopietic stem cells, mesenchymal stem cells have low immunogenicity by virtue of their low MHC expression and also possess immunomodulatory effects, hence have utility in many diseases including inflammatory diseases. They also provide greater advantages over other stem cells including their relatively easy tissue isolation, absence of obvious risk for the donor or ethical constraints, capacity of migrating and homing to the injured site (e.g., tumor tropism), ability to expand for a relatively long period of time, ability to modify the host immune environment and higher transdifferentiation potential.¹⁶

The steps of allogenic hematopoietic stem cell therapy include stem cell mobilization, collection of stem cells, conditioning of recipient, stem cell infusion and recovery [Table 3].¹⁷⁻²⁰

Applications of Stem Cells in Dermatology [Table 4] Pemphigus

Even though the first-line treatment of pemphigus remains to be corticosteroids and other immunosuppressants, some patients remain refractory to therapy, making it imperative to explore other therapies. Hematopoietic stem cell therapy has been tried successfully in pemphigus as shown in a few studies.²¹⁻²⁴ The proposed mechanism of action is that the transplanted stem cells repopulate the immune system, the number of autoreactive immune cells decline and this helps to restore the immunological balance.

There are case reports and small case series from India and abroad on successful treatment of recalcitrant pemphigus with both autologous and allogeneic hematopoietic stem cell therapy using different mobilization and conditioning regimens [Table 5]. Infection was the most common side effect, with sepsis and occasionally death occurring in these patients.²¹⁻²⁴

The available literature suggests the efficacy of hematopietic stem cell therapy in treatment of pemphigus (grade of recommendation C, level of evidence 4); however, large scale multicentric studies with longer follow-up are needed to confirm the results.

Systemic sclerosis

In search of a definite disease modifying treatment, systemic sclerosis is one of the first autoimmune diseases to be subjected to stem cell therapy. Hematopoietic stem cell therapy aims to non-specifically immunoablate aberrant self-reactive Tand B-cells through high-dose immunosuppression, with subsequent reconstitution of a renewed and tolerant immune system by means of infusing patient's previously collected hematopoietic stem cells. Autologous hematopoietic stem cell therapy is preferred over allogeneic therapy due the

Table	Table 3: Steps and principles of allogenic hematopoietic stem cell therapy ¹⁷⁻²⁰			
Step	Comments			
Stem cell mobilization	Quiescent hematopoietic stem cells in bone marrow are tethered to osteoblasts, other stromal cells and the extracellular matrix in the stem cell niche through a variety of adhesive molecule interactions. Stem cell mobilization aims at disruption of these niche interactions, thereby resulting in release of stem cell from the bone marrow into the peripheral blood. Mobilization regimens include cytotoxic agents (cyclophosphamide), hematopoietic growth factors (G-CSF, GM-CSF, both are FDA approved), small-molecule chemokine analogues (Plerixafor, an inhibitor of CXCR4, FDA approved for patients who fail to mobilize sufficient CD34+ cells for ASCT), recombinant monoclonal antibody (Natalizumab)			
Collection of stem cells or harvesting	The donor stem cell can be obtained by either direct bone marrow biopsy or by peripheral stem cell mobilization and collection of peripheral blood. Subsequently, either simple apheresis or stem cell manipulation with selection for CD34+ is done so as to prevent reinfusion of autoreactive cells. In autologous transplant the stem cells are stored in deep-freeze condition/in liquid nitrogen as a gap of 4 weeks is given for the cells to recover to undergo conditioning regimen, while in allogeneic transplant, collection and transplantation are done on the same day, eliminating the need for storage			
Conditioning of recipient	Preparative/conditioning regimen has to be given in autologous and allogeneic transplantation to prevent graft rejection and reduce tumor burden. The agents used include both radiotherapy and chemotherapy. Total myeloablation was the norm in older days, but with recognition of graft-versus-tumor effect having a contributory role in the success of allogenic HCT, reduced intensity, nonmyeloablative conditioning regimens have been developed nowadays for better acceptance. Examples of conditioning regime include cyclophosphamide, busulfan, fludarabine, antithymocyte globulin, cytosine arabinoside, anti-CD45 antibody conjugated to I-131, high-dose TBI (800–1320 cGy). Low-dose TBI (200–400 cGy)			
Stem cell infusion	Following conditioning, stem cells are thawed and reinfused, either into the bone marrow or through intravenous route. Even when given in peripheral circulation, the stem cells home to bone marrow and engraftment takes place			
Recovery	Following the conditioning regimen, the patient enters a stage of intense immunosuppression/myelosuppression, which is related to increased mortality and morbidity in transplant recipient. Supportive therapy is given which includes anti-emetics, anti-diarrheal, antibiotic, antiviral, and antifungal coverage. G-CSF, red cell and platelet transfusions is done when the levels of leukocytes are <1000, hemoglobin <7 g, platelet <30,000 respectively			

ASCT: Autologous stem cell transplantation, CXCR4: Chemokine receptor type 4, CD34: Cluster of differentiation 4, cGy: Centigray, FDA: Food and drug administration, G-CSF: Granulocyte-colony stimulating factor, GM-CSF: Granulocyte-macrophage colony stimulating factor, HCT: Hematopoietic cell transplantation, TBI: Total body irradiation

lower treatment-related mortality and lack of graft-vs-host disease in the former.²⁵ Stem cell therapy in this condition has been well studied in three randomized controlled trials (RCTs), namely, American Scleroderma Stem cell versus Immune Suppression Trial (ASSIST, phase 2, 19 patients), Autologous Stem cell Transplantation International Scleroderma Trial (ASTIS, phase 3, 156 patients) and The Scleroderma Cyclophosphamide Or Transplantation study (SCOT, phase 3, 75 patients), besides several case series and pilot studies.²⁶⁻³⁸ Despite the slight differences in methodology, all the studies have shown autologous hematopoietic stem cell therapy as an effective, safe and feasible modality in systemic sclerosis (level of evidence-

Table 4: Dermatological conditions in which stem cell therapy	y
has been tried	

Good results	Promising results	Results with low evidence	Discouraging results
Systemic sclerosis	Psoriasis	Wound healing Scleromyxedema	Epidermolysis bullosa
SLE Pemphigus	Vitiligo	Alopecia HIV	Merkel cell
		Melanoma Aesthetic medicine	carcinoma

SLE: Systemic lupus erythematosus

2a, 2b. 4) [Table 6]. Since severe major organ involvement (pulmonary, cardiac or renal) or serious comorbidities are an absolute contraindication for hematopoietic stem cell therapy, these patients were excluded from all the three trials. It has been found to be more effective than conventional immunosuppressive therapies and is currently the only disease modifying strategy for improving long-term survival, prevention of organ worsening and improvement of skin and pulmonary function and improving the overall quality of life of patients.³⁹ Data provided by the European and American registries include overall 3-year survival rates of around 80% and 5-year progression-free survival rate of 55%.29,40 The European Society for blood and marrow transplantation and British society of blood and marrow transplantation categorize autologous hematopoietic stem cell therapy in severe resistant disease as "clinical opinion," that is, after assessing risks and benefits.⁴¹ Guidelines from the American society for blood and marrow transplantation categorize autologous hematopoietic stem cell therapy as "standard of care, rare indication" (as a treatment option for individual patients after careful evaluation of risks and benefits) in children and "developmental" in adults.42

	Table 5: Studies on stem cell therapy in treatment of pemphigus				
Author, year	Indication and inclusion	Methods	Results	Side effects	
Oyama <i>et al.</i> , 2004 ²¹ Case report	Refractory pemphigus foliaceus. BSA - 20% Resistant to topical betamethasone, oral prednisone, azathioprine, MMF, dapsone, cyclophosphamide 75 mg/ day, for 9 months	Autologous HSCT Mobilization - cyclophosphamide and G-CSF Conditioning regimen: Cyclophosphamide and rATG. Methylprednisolone 1.0 g/day before each dose of rATG	Skin lesions resolved over 2 months; maintained till 10 months Prednisone tapered off over 4 months	Culture negative neutropenic fever, nausea, anorexia Relapse: Few erythematous plaques on nose and scalp, responded to topical steroids No systemic therapy for 19 months post-HSCT	
Suslova <i>et al.</i> , 2010 ²² Case report	Pemphigus vulgaris. BSA - 30% Resistant to steroids, methotrexate, dapsone, chlorambucil, azathioprine	Allogeneic HSCT Conditioning regimen: Alemtuzumab, 300 cGy of TBI Adjuvant: oral sirolimus	Severity decreased by 9 th month post-transplantation	Arthralgia arthritis Relapse: None at 24 months	
Vanikar <i>et al.</i> , 2012 ²³ Case series, 11 patients	Clinical and biopsy proven pemphigus vulgaris, resistant to prednisolone and topical steroid	Cytokine-stimulated allogeneic HSCT	Recovery began (skin lesions started regressing) within 24 h of HSCT and new lesions stopped erupting after 6 months. Over a mean follow-up of 8.02 years, all patients were well without recurrence/new lesions	No GVHD/AE observed in any patient/donor	
Wang <i>et al.</i> , 2017 ²⁴ Case series, 12 patients	Nine of pemphigus vulgaris, three of pemphigus erythematosus, one of pemphigus foliaceus Persisting disease after high doses of steroids, or at least one kind of immunosuppressant, for <6 months; or patients with steroid-related diseases or severe contraindications and complications to steroids	Autologous peripheral HSCT	Overall survival was 91.6% at 80.33 months, complete remission was achieved and maintained in 90.9% (10/11); 81.8% (9/11) and, 75% (6/8) patients at 6 months, 1 year and 5 years, respectively, two patients developed relapse at 5 and 6 months post- transplant	Infection (most common side effect) in 8 (66.7%) cases, with sepsis in 2 (16.7%), of which one died at 2 months post-transplant. Other AE: Pyrexia, headache and transaminitis	

BSA: Body surface area, cGy: Centigray, G-CSF: Granulocyte-colony stimulating factor, GVHD: Graft versus host disease, HSCT: Hematopoietic stem cell transplantation, MMF: Mycophenolate mofetil, rATG: Rabbit antithymocyte globulin, TBI: Total body irradiation, AE: Adverse event

A ()		Table 6: Studies on stem cell thera		
Author, year	Indication and inclusion	Methods	Results	Side effects (number of patients)
Oyama <i>et al.</i> , 2007 ²⁶ Case series, 10 patients	Diffuse systemic sclerosis with an mRSS >13 and internal organ involvement	Autologous HSCT Mobilization: cyclophosphamide and G-CSF Conditioning regimen: cyclophosphamide plus rabbit anti- thymocyte globulin Outcome measures: mRSS, PFT, HRCT, cardiac and renal	Significant improvement in mRSS at 6, 12 and 24 months Cardiac, pulmonary and renal functions - Stable	Neutropenic fever - 5 Clostridium difficile colitis, culture negative pulmonary infiltrate, fluid overload, acute renal failure, engrafment syndrome - 1 patient each chemotherapy-related nausea, vomiting, diarrhea, asthenia and mile liver enzyme elevation - Most of the patients
Nash <i>et al.</i> , 2007 ²⁷ Case series, 34 patients	Early (<4 years) diffuse scleroderma (mRSS >15) and internal organ involvement	Autologous HSCT Mobilization: G-CSF Conditioning regimen: Total body irradiation with cyclophosphamide and equine anti-thymocyte globulin Post-transplant - prednisone	One-year survival - 79% Significant improvement in mRSS and FVC	CMV gastroenteritis - 1 Bacteremia - 11 Herpes zoster - 6 Fatal pulmonary toxicities - 2 Renal crisis - 6 Supraventricular arrhythmias - 2 patients Heart failure - 2 Treatment related death - 8 (23%) cases
Vonk <i>et al.</i> , 2008 ²⁸ Retrospective study, 26 patients	Rapidly progressive disease (2 years duration), mRSS >20 or a disease duration >2 years, progression of mRSS (>20%) plus major organ involvement	Autologous HSCT Mobilization: Cyclophosphamide and G-CSF Conditioning regimen: cyclophosphamide plus anti-thymocyte globulin Outcome measures: mRSS, PFT, survival	mRSS - significant decrease in mRSS in 19 (73%) cases after 1 year and in 15/16 (94%) patients after 5 years No significant change in FEV ₁ or DLCO Progression/event free survival 64.3% at 5 years and $57.1%at 7 years$	Transplant related mortality: 1 (3.8%) case Relapse: 6 (28%) patients at 2–4 years
Farge <i>et al.</i> , 2010 ²⁹ Retrospective study, 175 patients	Systemic sclerosis	Autologous HSCT Myeloablative (total body irradiation)/ non-myeloablative (cyclophosphamide/ busulfan/carmustine, cytarabine, melphalan, and etoposide/antithymocyte globulin) Outcome measures: survival	Overall survival: 72.6% at 5 years Progression/event free survival: 55% at 5 years	Transplant related mortality: 12 (6.8%) cases
Burt <i>et al.</i> , 2011 ³⁰ Phase 2 ASSIST trial. 19 patients Single center randomized controlled trial	Diffuse systemic sclerosis mRSS ≥15 with internal organ involvement, disease duration ≤4 years, age <60 years	Autologous peripheral blood HSCT (ten patients) versus cyclophosphamide pulse (nine patients) HSCT group: mobilization with cyclophosphamide and G-CSF Conditioning regimen: cyclophosphamide plus anti-thymocyte globulin Control group: Cyclophosphamide 1 g/sq.m monthly pulse for 6 months. Outcome measures: improvement in mRSS (>25%) and FVC (>10%) Mean follow up period of 2.6 years	All patients of stem cell group improved at or before 12 months follow-up. No patient had disease progression. Improvement in FVC and mRSS persisted at follow-up. In control group, none had improvement. Seven patients switched to receive stem cell transplantation, after which 4 were followed up for at least 1 year, with all showing improvement. No mortality in both groups at 12 months and overall	
Henes <i>et al.</i> , 2012 ³¹ Case series, 26 patients	Systemic sclerosis with inefficacy of cyclophosphamide or rapidly progressive diffuse disease	Autologous stem cell transplantation Mobilization: cyclophosphamide and G-CSF Conditioning regimen: cyclophosphamide plus antithymocyte globulin Outcome measures: mRSS, PFT	Response rate 25%	3 deaths before transplantation. Transplant-related mortality: 4% Treatment-related mortality: 11% Relapse: 7 patients (4.4 years of follow-up)
Burt <i>et al.</i> , 2013 ³² Retrospective study, 90 patients	Diffuse systemic sclerosis (mRSS >14) and internal organ involvement (pulmonary, cardiac or gastrointestinal)	Autologous HSCT Mobilization: cyclophosphamide and G-CSF Conditioning regimen: cyclophosphamide and rATG Outcome measures: mRSS and PFT	mRSS and FVC improved. Total lung capacity and DLCO not improved	Treatment related mortality: 5 (6%) cases

Table 6: (Continued)				
Author, year	Indication and inclusion	Methods	Results	Side effects (number of patients)
van Laar <i>et al.</i> , 2014 ³³ ASTIS trial, 156 patients Multicenter randomized controlled trial, Phase 3	Diffuse systemic sclerosis, mRSS ≥15 and internal organ involvement, disease duration ≤4 years, age 18–65 years	Autologous HSCT (79 patients) versus cyclophosphamide pulses (77 patients). Mobilization: cyclophosphamide and G-CSF Conditioning regimen: cyclophosphamide plus anti-thymocyte globulin Control group: cyclophosphamide 750 mg/sq.m monthly pulse for 12 months Outcome measures: event free survival till death/persistent major organ failure Median follow up 5.8 years	HRCT group - significant improvement in MRSS, total lung capacity, FVC HSCT was associated with increased treatment-related mortality (8 cases, 10%), none in control group in the first year after treatment. However, HCST conferred significant long-term event-free survival benefit	Grade 3 or 4 AEs in first 2 years of follow-up: 51 (62.9%) patients in HSCT group and 30 (37%) in control group
Henes <i>et al.</i> , 2014 ³⁴ Case series, 6 patients	Progressive systemic sclerosis with cardiac manifestations (biopsy proven myocardial fibrosis)	Autologous HSCT Mobilization: Cyclophosphamide and G-CSF Conditioning regimen: thiotepa, cyclophosphamide and rATG Outcome measures: mRSS, HRCT chest and PFT	Significant improvement in mRSS score at 6 and 12 months. In 4 patients - >25% improvement Median lung density and total lung volume improved Non-significant improvement of FVC	Aspergillus pneumonia - 2 patients No transplant related mortality Relapse: 2 patients
Del Papa <i>et al.</i> , 2017 ³⁵ Retrospective study, 18 patients	Rapidly progressing diffuse systemic sclerosis with disease duration <4 years Control group (36 patients) treated with conventional therapies	Autologous HSCT Mobilization: cyclophosphamide and filgrastim Conditioning regimen: Cyclophosphamide and rATG Outcome measures: mRSS, DLCO, disease activity using the ESSG scoring system follow-up of 60 months	in autologous HSCT group compared to control group at 1 year and maintained at the end of follow-up. Significantly	Only one patient died during follow-up due to systemic sclerosis related manifestation (fatal cardiac arrhythmia occurring after 34 months)
Sullivan <i>et al.</i> , 2018 ³⁶ SCOT trial, 75 patients Multicenter randomized, open-label, phase 3 trial	Diffuse systemic sclerosis, mRSS ≥16 and internal organ involvement, disease duration ≤4 years, age 18–69 years	Autologous HSCT (36 patients) versus cyclophosphamide (39 patients) Mobilization: G-CSF Conditioning regimen: Fractionated total-body irradiation, cyclophosphamide and equine antithymocyte globulin Control group: cyclophosphamide 500 mg/sq.m followed by 750 mg/sq.m monthly pulse for 11 months Outcome measures: Global rank composite score at 54 months Follow up to 4.5 years	Rate of event-free survival at 54 months was 79% in transplantation group and 50% in cyclophosphamide group (<i>P</i> =0.02). At 72 months, Kaplan-Meier estimates of event-free survival (74% vs. 47%) and overall survival (86% vs. 51%) also favored transplantation (<i>P</i> =0.03 and 0.02, respectively). Treatment- related mortality in the transplantation group was 3% at 54 months and 6% at 72 months, as compared with none in cyclophosphamide group	Rate of serious AEs in person-years: 0.38 (transplantation group) and 0.52 (cyclophosphamide group). Rate of infections (of any grade) per person- year: 0.75 (transplantation group) and 0.79 (cyclophosphamide group) Rate of infections of grade 3 or more per person-year: 0.21 (transplantation group) and 0.13 (cyclophosphamide group)
Nakamura <i>et al.</i> , 2018 ³⁷ 14 patients Long-term follow-up in a phase II Trial	SSc patients with disease duration <3 years, with at least one of the following: mRSS) ≥15, refractory digital ulcer or interstitial lung disease	HSCT were performed after conditioning using cyclophosphamide Median follow-up period was 137 months	Overall survival 93%, event- free survival rate 40% at 10 years. Eight patients (57%) achieved more than 50% decrease in mRSS from baseline within 6 months after HSCT	AEs related to HSCT occurred in 6 patients (43%). Severe cardiomyopathy occurred in 2 patients, and one of them had a fatal course
Nair <i>et al.</i> , 2018 ³⁸ Case series, 4 patients	Diffuse systemic sclerosis with mRSS of 15 and one internal organ involvement	Autologous HSCT Mobilization: cyclophosphamide and G-CSF Conditioning regimen: cyclophosphamide plus fludarabine plus anti-thymocyte globulin Outcome measures: mRSS, PFT	Mean mRSS reduced to 22.2 after 1 year and 18.5 at 4 years of follow-up from baseline 24.5. Mean FVC increased from 65% to 78.5% at 4 years follow-up, while DLCO increased from 55% to 77.73%	No significant procedure-related side-effects

ASSIST: American scleroderma stem cell versus immune suppression trial, ASTIS: Autologous stem cell transplantation international scleroderma trial, CMV: Cytomegalovirus, DLCO: Diffusing capacity of the lungs for carbon monoxide, ESSG: European scleroderma study group, FEV₁: Forced expiratory volume during first second, FVC: Forced vital capacity, G-CSF: Granulocyte-colony stimulating factor, HSCT: Hematopoietic stem cell transplantation, mRSS: modified Rodnan skin score, rATG: Rabbit antithymocyte globulin, PFT: Pulmonary function test, HRCT: High-resolution computed tomography, AEs: Adverse events

Stem cell therapy in dermatology

Patients with acute onset rapidly progressive disease refractory to conventional therapy and mild initial organ damage carry a better prognosis after hematopoietic stem cell therapy, while long standing disease, indolent course and irreversible organ damage are contraindications to this therapy.⁴³ Hence, the challenge is to identify patients who are most likely to be benefitted, and the timing of hematopoietic stem cell therapy is to be tailored based on the phase of disease.

Risks of hematopoietic stem cell therapy include gonadal failure, secondary autoimmune diseases and malignancies. The European registries analyzed mortality after autologous hematopoietic stem cell therapy for severe autoimmune disease from 1996 to December 2007 and reported 5% mortality by day 100 following transplantation. The commonest cause of death included SSc recurrence, and transplant-related mortality, with others being cardiotoxicity, hemorrhage, secondary malignancies and infections.²⁹ As systemic sclerosis has complex cardiac manifestations and cyclophosphamide is also associated with cardiotoxicity, a comprehensive pretransplant cardiac assessment is recommended even in patients without cardiac symptoms.44 Hematopoietic stem cell therapy can induce gonadal failure in both sexes, therefore semen, oocyte or embryo cryopreservation/hormone replacement in case of gonadal failure should be considered as appropriate.45 The cumulative incidence of secondary autoimmune diseases was 9.8% after 5 years of treatment.⁴⁶ In view of the high risk of treatment related side effects and early treatment-related mortality, the new EULAR treatment recommendations advise for careful selection of patients and highlight the experience of the medical team to be of utmost importance.47

Systemic Lupus Erythematosus

Hematopoietic stem cell therapy had been tried in patients with refractory systemic lupus erythematosus (SLE). The first case report of a successful autologous hematopoietic stem cell therapy in SLE was published in 1997, subsequent to which many observational studies and clinical trials have been conducted [Table 7].⁴⁸⁻⁶⁰ The current literature suggests that hematopoietic stem cell therapy is an option in refractory disease of short duration.⁶¹ European society for blood and marrow transplantation and British society of blood and marrow transplantation categorize autologous hematopoietic. stem cell therapy in severe resistant disease as "clinical opinion," that is, it can be undertaken after assessing risks and benefits.⁴¹ Guidelines from the American society for blood and marrow transplantation categorize the treatment as "developmental" in adults.⁴²

Therapeutic potential of mesenchymal stem cells has been explored in various autoimmune diseases including SLE.⁶² It has been found to be safe and effective in SLE, with decrease in disease activity, improvement in renal function, reduction in autoantibody production, peripheral Treg upregulation and re-establishment of balance between Th1- and Th2-related cytokines.⁶³ Their immunomodulatory and regenerative characteristics make them a promising novel therapy for SLE.

Psoriasis

Although recent years have seen considerable progress in elucidating psoriasis pathogenesis, the exact mechanism is yet not fully known. At present, attention has been drawn to the possibility of dysfunction of certain types of stem cells to be the main cause of dysregulation of the inflammatory response in psoriasis.64 The idea originated while noticing psoriasis patients undergoing hematopoietic stem cell therapy and subsequently achieving longterm remission.65,66 In contrast, cases of acquired psoriasis after bone marrow transplantation from donors with psoriasis have also been reported.⁶⁷⁻⁶⁹ This suggests that hematopoietic stem cells have a significant role in disease pathogenesis. Mesenchymal stem cells have also been tried in few studies with success.70 Clinical benefits may be attributed to mesenchymal stem cell engraftment or to their paracrine or immunomodulatory effects. However, the availability of cost-effective, safe alternatives prevent the use of stem cell transplantation as a viable option in psoriasis.

Epidermolysis Bullosa

Although there is no specific treatment for this genetic condition till date, various therapeutic modalities are being studied that aim at correction of the underlying genetic defect and restore skin barrier. Stem cell therapy is one such cell based therapy. Either mesenchymal stem cells from the donor can be introduced intradermally or intravenously, bone marrow transplant can be done from allogeneic donor, or patient's stem cells can be genetically modified and transplanted. While hematopoietic stem cell therapy has failed to live up to its initial promise, allogenic mesenchymal stem cells therapy may be useful in alleviating some symptoms.

In a study by Conget *et al.*, two patients with severe generalized recessive dystrophic epidermolysis bullosa (EB) treated with intradermal administration of allogenic mesenchymal stem cells from bone marrow showed complete healing of ulcers around the treated site by 12 weeks.⁷¹ One week after intervention, type VII collagen was detected along the basement membrane zone and the dermal–epidermal junction was continuous in the treated site. However, the clinical effect lasted for only 4 months in both the patients.

A case of junctional EB treated with primary keratinocyte culture had normal morphology and absence of spontaneous and induced blisters or erosions at 21 months of follow-up.⁷²

Studies by El-Darouti *et al.* and Wagner *et al.* using stem cells have also shown promising results.^{73,74} Petrof *et al.* studied ten recessive dystrophic EB children treated with intravenous allogeneic bone marrow-derived mesenchymal stem cells and found that the procedure was well tolerated and the adverse effects were minimal at nine months of follow-up.⁷⁵ However, skin biopsy performed at day 60 showed no increase in type VII collagen and no new anchoring fibrils.

Although the initial clinical improvement was promising, it did not sustain with time due to lack of production of

long lasting proteins (collagen and laminins). The current evidence of the use of stem cell therapy in EB is limited as the total number of patients treated with this modality is low, thus warranting further research to evaluate the efficacy and the potential risk to benefit correlation.⁷⁶

Wound Healing

Epidermal stem cells have the potential to regenerate the epidermis and differentiate into various cell types and tissues, under appropriate stimuli.⁷⁷ This property can be utilized to advantage in initiation and acceleration of healing of chronic

non-healing wounds. Mesenchymal stem cells have been shown to promote wound healing by decreasing inflammation, promoting angiogenesis and decreasing scarring.⁷⁸ Falanga *et al.* successfully applied human mesenchymal stem cells to non-healing and acute wounds, using a specialized fibrin spray system.⁷⁹ Lu *et al.* demonstrated efficacy of stem cell therapy in diabetic foot ulcers.⁸⁰

Vitiligo

Medical management is the first-line therapy for vitiligo and when it fails surgical therapies are considered.

Author, year	Indication and inclusion	Methods	Results	Side effects
Marmont <i>et al.</i> , 1997 ⁴⁸ Case report	A 48 year old woman, severe SLE since 20 years. Despite being on azathioprine, she required 40 mg of methylprednisolone to be in remission, recurrent chest pain (costochondritic) requiring intravenous corticosteroids	Autologous BMT Conditioning: 15mg/kg Thiotepa followed by 100 mg/kg of cyclophosphamide over 2 days	7 months after transplant, corticosteroid requirement reduced to 10 mg methylprednisolone daily, and ANA/anti-DNA antibodies not demonstrable. Chest pain did not recur	Post-transplant course was uneventful
Burt <i>et al.</i> , 1998 ⁴⁹ Case series, 2 patients	Patient 1: malar rash, arthralgias, hematuria, diffuse abdominal pain, pancytopenia ascites and pericardial effusion. Renal function was declining Patient 2: active pneumonitis, pulmonary infiltrates, hypoxia, WHO class IV glomerulonephritis. Positive ANA	blood stem cells Mobilization: Cyclophosphamide and G-CSF Conditioning regimen: cyclophosphamide and	Patient 1: At 12 months, malar rash, cytopenia, arthralgia, pericardial effusions resolved and renal function improved. Patient off all immunosuppressant medications Patient 2: at 6 months follow-up, pulmonary infiltrates improved. PFTs and creatinine values static. ANA decreased. Steroids tapered from 80 mg/day to 25 mg/day	Cell lysis effect, acid base and electrolyte disorders, volume disturbances
Fouillard <i>et al.</i> , 1999 ⁵⁰ Case report	A 35-year old woman with Raynaud's phenomenon, arthritis, cutaneous vasculitis, proteinuria (WHO class III renal involvement) and ANA positivity (1:4096), anti- ds-DNA and anti-SSA antibodies, right homonymous hemianopia (left occipital ischemia)	Autologous HSCT Mobilization: cyclophosphamide and G-CSF Conditioning regimen: BEAM	At 1-year follow-up, clinical remission – No Raynaud's phenomenon, arthritis, cutaneous vasculitis. ANA and anti SSA negative at 1 st and 6 th month but become positive at 9 months. Renal - Reduced to class Ii Steroid requirement - 12.5 mg/day of prednisone	Grade II mucositis
Brunner <i>et al.</i> , 2002 ⁵¹ Case report	Treatment resistant SLE with severe nephrotic syndrome and recurrent pneumonitis Resistant to steroids, azathioprine, cyclophosphamide	Autologous HSCT Mobilization: Cyclophosphamide and G-CSF Conditioning regimen: cyclophosphamide and ATG	At 21 months follow-up, disease under remission. Not on immunosuppressive drugs CT chest - No SLE related pulmonary activity	Sepsis - <i>Pseudomonas</i> <i>aeruginosa</i> Moderate intermittent fluid overload, mild mucositis
Lisukov <i>et al.</i> , 2004 ⁵² Case series, 6 patients	Recalcitrant SLE (cyclophosphamide pulse), with Class III or IV glomerulonephritis, CNS lupus, vasculitis involving the lung or heart, or life threatening cytopenias	HSCT Source: Bone marrow (4 patients) and peripheral (2 patients)	Case 1: Complete remission. Steroid stopped at 10 months Case 3: Improvement in CNS lupus. Low dose steroids (7.5–10 mg/day), azathioprine and cyclosporine Case 6: Complete remission after 6 months	day 11. Sepsis and

(Contd...)

		Table 7: (Continued)	D	<u></u>
Author, year	Indication and inclusion	Methods	Results	Side effects
Burt <i>et al</i> , 2006 ⁵³ Case series, 49 patients	Patients with class III or IV glomerulonephritis or lung involvement (vasculitis, pneumonitis, alveolar hemorrhage), CNS involvement (cerebritis or transverse myelitis), vasculitis (biopsy proven or angiogram), biopsy proven myositis, transfusion-dependent autoimmune cytopenia, symptomatic pericardial or pleural effusions, ulcerative mucocutaneous disease, antiphospholipid syndrome refractory to treatment	Autologous HSCT Mobilization: Cyclophosphamide and G-CSF Conditioning regimen: Cyclophosphamide and equine antithymocyte globulin	At 5 years Overall survival - 84% Disease free survival - 50% No remission - 4 patients SLEDAI score improved and remained lower till 5 years Creatinine clearance - Stable	Deaths: Disseminated mucormycosis before transplantation, but after stem cell mobilization - 1, non- treatment related - 6, SLE related - 4 Infections: Pneumocystis jiroveci - 1, esophageal candidiasis - 1, gram positive bacteremia - 4 during mobilization, 1- during transplantation; peritoneal fluid: <i>Candida parapsilosis</i> - 1; blood: <i>Candida glabrata</i> - 1; immune mediated hematological: acquired factor VIII deficiency - 2, ITP - 1
Gualandi <i>et al.</i> , 2007 ⁵⁴ Case series, 8 patients (blood - 4, marrow - 1, mobilized stem cell - 3)		Autologous HSCT Mobilization: Cyclophosphamide and G-CSF Conditioning regimen: Reduced intensity protocol thiotepa and cyclophosphamide	Complete remission following transplant SLEDAI index improved from 90 to 9	Fever - All patients Relapses - 2 patients
Loh <i>et al.</i> , 2007 ⁵⁵ Case series, 13 patients	Mean SLEDAI - 20 Impaired left ventricular ejection fraction (6), pulmonary hypertension (5), mitral valve dysfunction (3), pericardial effusion (1)	Autologous HSCT Mobilization: Cyclophosphamide and G-CSF Conditioning regimen: Intravenous cyclophosphamide with equine ATG or alemtuzumab	Disease remission Impaired LVEF - Stable or improved Mitral valve disease improved Elevated pulmonary Pressures paralleled disease activity	5 patients - Fluid overload (mobilizatio or transplant course) Deaths - 2 (post- transplant SLE progression). No cardiad events or transplant related deaths Relapse - 2 patients
Vanikar <i>et al.</i> , 2007 ⁵⁶ Retrospective cohort study, 27 patients	Biopsy proven lupus nephritis with high dsDNA antibodies, ANA and low serum C3	Allogenic HSCT Mean follow-up 4.9 years	Average disease-free interval was 7.35 months (range, 2.1– 12.7 months)	No GVHD in any patient
Fage <i>et al</i> , 2010 ²⁹ Multi-centre observational study, 85 patients	All consecutive patients with autoimmune diseases who underwent stem cell transplantation	Autologous HSCT Mobilization: cyclophosphamide and G-CSF or G-CSF alone Conditioning regimen: total body irradiation or single-agent chemotherapy or combinations based on cyclophosphamide, busulfan, and BEAM ± anti-thymocyte globulin	At 5 years, overall survival – 76% Progression-free survival – 44%	At 100 days, transplant-related mortality – 11%
Alchi <i>et al</i> , 2012 ⁵⁷ Retrospective study, 28 patients	Patients reported to EBMT registry from 2001 to 2008	Autologous HSCT	5 years overall survival: 81±8% Disease free survival: 29±9% Nonrelapse mortality: 15±7% Relapse incidence: 56±11%	Severe/life threatening AEs: 31 (15 - infections, 3 - severe immune events, 1 – post-transplant EBV associated lymphoproliferative disorder, secondary autoimmune disease - 2 cardiovascular events- 2 Deaths: 5 (3 - infections 1 - autoimmune hemolytic anemia, 1 - disease progression)

	Table 7: (Continued)				
Author, year	Indication and inclusion	Methods	Results	Side effects	
Leng <i>et al.</i> , 2017 ⁵⁸ Prospective cohort study, 27 patients	Severe SLE (WHO class III or IV lupus nephritis progressive pulmonary dysfunction or pulmonary fibrosis, recurrent flares of lupus encephalopathy, transverse myelitis or catastrophic antiphospholipid syndrome)	High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation	21 (87.5%) cases achieved remission at 6 months 2 achieved partial remission and 1 patient died, 14 patients completed 10 years follow-up. The 10-year overall survival rate and 10 years remission survival rate were both 86%, 16 (66.7%) patients remained in remission, four were lost to follow-up, two died, and one patient remained active	Infections (CMV, bacterial, both) - 12 (44.4%) patients, nausea, vomiting, alopecia, transaminitis	
Burt <i>et al.</i> , 2018 ⁵⁹ Prospective cohort study, 30 patients	Refractory SLE, steroid dependent, having organ damage, and at high risk of mortality	Autologous HSCT using two different non-myeloablative conditioning regimens four patients (Group 1): cyclophosphamide (200 mg/kg) and alemtuzumab (60 mg) 26 patients (Group 2): cyclophosphamide (200 mg/kg), rATG (Thymoglobulin) (5.5 mg/kg), and rituximab 1000 mg	Group 1: None entered remission Group 2: Disease remission (defined as no immune suppressive drugs except hydroxychloroquine and/or ≤10 mg/day of prednisone) was 92% at 6 months, 92% at 1 year, 81% at 2 years, 71% at 3 years, and 62% at 4 and 5 years post-HSCT Conclusion- Autologous HSCT outcome is dependent on conditioning regimen	clostridium difficile	
Cao <i>et al.</i> , 2018 ⁶⁰ Prospective cohort study, 22 patients	SLE with failed previous therapy (prednisolone 0.5 mg/kg at least 2 months, or methylprednisolone pulse treatment for 6 months, or cyclophosphamide 500 mg/m ² /month × 3 months)	Autologous HSCT Conditioning regimen of cyclophosphamide and ATG	3-year and 5 years Progression-free survival was 77.27% and 67.9%, respectively Overall survival rate was 95.2%. The titers of ANA, anti-dsDNA, anti-Sm antibody, and 24-h urinary protein significantly decreased, while complements 3 (C3) and C4 normalized at 100 days after transplantation (P <0.05)	Infections (virus, bacteria, PCP and TB) The incidence of CMV reactivation was 59.09% post- transplantation in 3 years	

ANA: Anti-nuclear antibody, AVN: Avascular necrosis, anti dsDNA: Anti-double stranded deoxyribonucleic acid, anti-Sm: Anti-smith antibody, anti-SSA: Anti–Sjögren's-syndrome-related antigen A autoantibodies, BEAM: Carmustine, cytarabine, melphalan and etoposide, BMT: Bone marrow transplant, CMV: Cytomegalovirus, CNS: Central nervous system, EBMT: European group for blood and marrow transplantation, EBV: Epstein–Barr virus, GVHD: Graft versus host disease, CSF: Colony stimulating factor, G-CSF: Granulocyte-CSF, HSCT: Hematopoietic stem cell transplantation, ITP: Immune thrombocytopenic purpura, LVEF: Left ventricular ejection fraction, ATG: Antithymocyte antiglobulin, rATG: Rabbit ATG, PCP: Pneumocystis carinii pneumonia, SLE: Systemic lupus erythematosus, SLEDAI: SLE disease activity index, TB: Tuberculosis, URTI: Upper respiratory tract infection, UTI: Urinary tract infection, VZV: Varicella zoster virus, WHO: World Health Organization, PFTs: Pulmonary function tests, CT: Computed tomography, AEs: Adverse events

Significant progress has been made in development of novel surgical techniques in vitiligo. The surgical modalities can be broadly divided into tissue and cellular grafts. Autologous non-cultured outer root sheath hair follicle cell suspension (NCORSHFS) is a recently described cellular graft technique. It is based on principle that hair follicle melanocytes have remarkable regenerative capacity which makes them a coveted source of melanocytes, instead of epidermis, for cell based therapies in vitiligo.⁸¹ Mohanty et al. in their pioneering study reported the use of NCORSHFS and reported a mean repigmentation of 65.7%.82 More than 75% repigmentation was achieved in 9/14 (64.2%) patients. The mean repigmentation rate was significantly less in patients with disease stability of less than 12 months duration. Vinay et al. studied the treatment variables determining therapeutic outcome in 30 patients with 60 target lesions undergoing NCORSHFS.83 Optimum repigmentation (> 75%) was seen in 21 of 60 (35%) lesions. The number of melanocytes (P = 0.04) and hair follicle stem cells (P = 0.01) transplanted was significantly higher among patients achieving optimum repigmentation. This,

along with absence of dermal inflammation was significant predictors of achieving optimum repigmentation.

Moreover, multilineage-differentiating stress enduring (MUSE) cells are other type of stem cells that can have utility in treatment of vitiligo. *Ex vivo* studies in three-dimensional skin culture model have identified factors that induce MUSE cells to differentiate into melanocytes, which get integrated in the epidermis and lead to melanogenesis.⁸⁴ The *in vivo* effect is yet to be determined.

Scleromyxedema

Scleromyxedema is a rare chronic fibro-mucinous disorder that may result in high mortality due to respiratory complications. Lacy *et al.* studied five patients who were given highdose chemotherapy with stem cell rescue and found that it offers durable remission in most patients, although it is not curative.⁸⁵ Illa *et al.* successfully treated scleromyxedema with chemotherapy and autologous stem cell transplantation.⁸⁶ Full recovery was achieved at six months and the patient continued to be in remission three years after the transplantation.

Alopecia

Although application of stem cell therapy in hair restoration is relatively new and the stem cell isolation techniques are varied, the results to date are promising in both androgenetic alopecia (AGA) and alopecia areata (AA). Anderi et al. harvested autologous adipose-derived stromal vascular cells through lipoaspiration and injected into the scalp of 20 patients with AA.⁸⁷ At three and six months of follow-up, they found statistically significant hair growth in all the patients. Adiposederived stem cell conditioned medium (ADS-CM), known to be rich in growth factors such as vascular endothelial growth factor, hepatocyte growth factor, platelet-derived growth factor, and insulin-like growth factor ILGF, has also be utilized to treat hair loss.⁸⁸ Gentile et al. isolated human adult stem cells by the centrifugation of human hair follicles obtained through punch biopsy and injected them into the scalps of 11 AGA patients resulting in an increase in hair density and count compared to baseline and placebo.89 Elmaadawi et al. who randomly assigned 40 patients (20 with AGA and 20 with AA) to receive either autologous bone marrow-derived mononuclear cells or autologous follicular stem cell injections into the scalp, found significant improvement in hair loss with no significant difference between the two preparations.⁹⁰ Li et al. introduced a novel stem cell method, termed "stem cell educator therapy" in which patient's mononuclear cells are separated from whole blood and allowed to interact with human cord blood-derived multipotent stem cells, and these "educated" cells are returned to patient's circulation.91 Of nine patients with severe AA, all but one experienced improved hair regrowth of varying degrees. Two patients (one with alopecia totalis and one with patchy AA) experienced complete hair regrowth at 12 weeks without relapse after two years. A combination of platelet-rich plasma and stem cell technology has also shown promising results.92

Human Immunodeficiency Virus

Till date, there is no curative therapy for HIV. HIV binds to CD4 receptor, after which it needs CXCR4 or CCR5 as a co-receptor for gaining entry into the target cell. In 2009, Hütter *et al.* reported a case, known as the "Berlin patient", of acute myeloid leukemia with HIV-1 infection who received allogenic HSCT twice from a donor with homozygous CCR5 delta32 allele. After transplantation, highly active anti-retroviral therapy (HAART) was stopped and the patient remained in remission at 20 months follow-up.⁹³

Ten years later, another HIV patient of Hodgkin's lymphoma underwent allogenic transplantation from donor with homozygous CCR5 delta32 allele following which antiretroviral therapy could be stopped after 16 months post-transplant and the patient was in remission after 18 months of stopping ART.⁹⁴

Merkel Cell Carcinoma

It is a rare cutaneous tumor with no standard treatment protocol of metastatic disease. In recent years, there has been an increased understanding of Merkel cell carcinoma biology, especially with regard to the Merkel cell polyomavirus as the causative agent, suggesting that healthy human skin harbors resident or transient polyomavirus capable of neoplastic transformation. Significant differences between polyomavirus-positive and polyomavirus-negative Merkel cell carcinomas in terms of morphology, gene expression, signaling pathways, genomic and epigenetic alterations, microRNA profiles, dysregulated immune surveillance, expression and post-translational aberrant protein modifications have been reported, which influence the overall prognosis of Merkel cell carcinoma.95 Recent works suggest that polyomavirus-positive and negative Merkel cell carcinomas arise from two different cells of origin: the virus-negative carcinoma from epidermal stem cells and the virus-positive Merkel cell carcinoma from dermal stem cells.96 Further research on possible involvement of Merkel cell carcinoma stem cells could provide platform significant basis for preclinical development of targeted therapeutics. Anecdotal report of polychemotherapy with autologous peripheral blood stem cell transplantation resulted in remission, though it lasted only six months.97

Melanoma

Melanoma is an aggressive, relatively radio- and chemoresistant tumor which is difficult to treat even with novel therapies including oncogene-directed therapy and immunotherapy. Recently, it has been suggested that cancer is a disease in which the persistence of the tumor relies on a small population of tumor-initiating cells, the tumor stem cells. This concept, though initially established for human myeloid leukemia, has been recently considered for melanoma (melanoma stem cells).98 These tumor stem cells are capable of self-renewal and thereby possess the ability for unlimited proliferation, are resistant to many therapeutic approaches and induce tumor relapse. Therefore, future therapies can be targeted at melanoma stem cell biomarkers, microenvironment and melanoma stem cells as a treatment option. Melanoma stem cells have been shown to express CD20 surface marker, ABCB5 (an ABC transporter protein), along with other markers including CD133, CD271 and aldehyde dehydrogenase.99 Since melanoma stem cells express CD20, rituximab, has been attempted in clinical trials to treat melanoma, producing regression in chemotherapyrefractory melanoma. Similarly, a monoclonal antibody against ABCB5+ melanoma stem cells in mouse models showed tumor inhibitory effects.¹⁰⁰ Molecules involved in the mitogen-activated protein kinase (MAPK) signaling could represent interesting targets to overcome melanoma resistance as it has been shown that MAPK activation by mutant B-RAF drives melanoma tumor proliferation and that resistance to B-RAF inhibitors can be (or not) associated with reactivation of the MAPK pathway ("escape route").¹⁰¹ The tumorigenic potential of tumor stem cells may be reduced by inhibition of essential stem cell factors or the therapeutic administration of differentiation factors.¹⁰²

Aesthetic Medicine

Adipose-derived stem cells have been shown to activate fibroblasts and secrete various growth factors which lead to antioxidant, pigment lightening and wound-healing effects in the skin.¹⁰³ They have been used effectively to treat wrinkles in animal models.¹⁰⁴ Fibroblasts play a crucial role in wound healing and by their ability to restore lost dermal constituents; cultured autologous fibroblasts show promising future in aesthetic medicine.¹⁰⁵

Current Status of Stem Cell Therapy in India

National Guidelines for Stem Cell Research, 2017, brought out by Indian Council of Medical Research (ICMR) and Department of Biotechnology (DBT), provides the basic guidelines needed for stem cell research in India.

These guidelines enumerate the various ethical issues, screening, categorization of research, levels of stem cell manipulation, stem cell research, manufacturing and release criteria for stem cells, procurement and banking, therapeutic uses, publicity and advertisements. The guidelines state that "The commercial use of stem cells as elements of therapy is prohibited. It must be emphasized that no stem cell administration to humans is permissible outside the purview of clinical trials".¹⁰⁶

At present, only hematopoietic stem cell therapy has been approved in India as per National Guidelines formulated by ICMR and DBT. According to the Ministry of Health and Family Welfare in 2017, there are 60 centers offering stem cell therapy in India. Western railway hospital, Vadodara, IKDRC, Ahmedabad and New Civil Hospital, Surat are the government institutions in the list of centers.¹⁰⁷ The list of all the centers is included as an addendum.

According to the american society for blood and marrow transplantation, hematopoietic stem cell therapy is approved in about 31 diseases in adults and 43 diseases in children.⁴² The approved indications include hematological malignancies, solid tumors, non-malignant diseases (e.g., aplastic anemia, Fanconi's anemia, dyskeratosis congenita and juvenile rheumatoid arthritis). Among dermatological diseases, the use of hematopoietic stem cell therapy had been approved in systemic sclerosis in children (<18 years of age) but not in adults by the Task force of ASBMT.

Difficulties in Stem Cell Therapy

- Ethical considerations: These include issues of consent, confidentiality, screening for transmissible diseases and procedural risks.
- Legal issues: There are many unauthorized centers in India that offer unproven stem cell therapies. The limitation is that, currently, the best available is only guidelines and not laws, due to which there is a gap between recommendation and implementation. A way to curb this practice is by making stringent rules and considering all stem cells and its products as drugs requiring drug trials before approval for a particular

disease management.108

- Possibility of graft rejection in allografting.
- Tumorigenicity of pluripotent stem cells Undesirable mutations may occur in stem cells when maintained for prolonged periods in culture and they may aberrantly differentiate to form tumors.
- The consequence of preservation of stem cells or their products on their viability and potency must be assessed.
- The quality control of cell processing and manufacturing must conform to the rules lain in Schedule M of Drugs and Cosmetics Act, 1940, which is sine qua non for all clinical trials.
- Future research regarding ideal patient selection, timing of intervention, appropriate conditioning regimens, post-intervention care and cost effectiveness would help to optimize the results of stem cell therapy.

Declaration of patient consent

Patient's consent not required as there are no patients in this study.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

- 1. The Nobel Prize in Physiology or Medicine; 2007. Available from: http://nobelprize.org/nobel_prizes/medicine/laureates/2007/index. html. [Last retrieved on 2007 Oct 08].
- New Drugs and Clinical Trials Rules. The Gazette of India: Extraordinary [Part ii-Sec. 3(i)] G.S.R. 227(E). New Drugs and Clinical Trials Rules; 2019.
- 3. Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood 2003;102:3483-93.
- 4. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978;4:7-25.
- Monti M, Perotti C, Del Fante C, Cervio M, Redi CA, Fondazione IRCCS Policlinico San Matteo, Pavia (Italia). Stem cells: Sources and therapies. Biol Res 2012;45:207-14.
- Prodinger CM, Reichelt J, Bauer JW, Laimer M. Current and future perspectives of stem cell therapy in dermatology. Ann Dermatol 2017;29:667-87.
- Ulloa-Montoya F, Verfaillie CM, Hu WS. Culture systems for pluripotent stem cells. J Biosci Bioeng 2005;100:12-27.
- Choi HR, Byun SY, Kwon SH, Park KC. Niche interactions in epidermal stem cells. World J Stem Cells 2015;7:495-501.
- Joulai Veijouye S, Yari A, Heidari F, Sajedi N, Ghoroghi Moghani F, Nobakht M. Bulge region as a putative hair follicle stem cells niche: A brief review. Iran J Public Health 2017;46:1167-75.
- Yamada T, Hasegawa S, Inoue Y, Date Y, Yamamoto N, Mizutani H, et al. Wnt/β-catenin and kit signaling sequentially regulate melanocyte stem cell differentiation in UVB-induced epidermal pigmentation. J Invest Dermatol 2013;133:2753-62.
- 11. Lan CC, Wu CS, Chiou MH, Hsieh PC, Yu HS. Low-energy heliumneon laser induces locomotion of the immature melanoblasts and promotes melanogenesis of the more differentiated melanoblasts: Recapitulation of vitiligo repigmentation *in vitro*. J Invest Dermatol 2006;126:2119-26.
- 12. Awad SS. Dermabrasion may repigment vitiligo through stimulation of melanocyte precursors and elimination of hyperkeratosis. J Cosmet

Dermatol 2012;11:318-22.

- Lan CC, Wu CS, Chen GS, Yu HS. FK506 (tacrolimus) and endothelin combined treatment induces mobility of melanoblasts: New insights into follicular vitiligo repigmentation induced by topical tacrolimus on sun-exposed skin. Br J Dermatol 2011;164:490-6.
- 14. Fuchs E, Horsley V. More than one way to skin. Genes Dev 2008;22:976-85.
- Shahrokhi S, Menaa F, Alimoghaddam K, McGuckin C, Ebtekar M. Insights and hopes in umbilical cord blood stem cell transplantations. J Biomed Biotechnol 2012;2012:572821.
- Menaa F, Shahrokhi S, Shastri VP. Corrigendum to "impact and challenges of mesenchymal stem cells in medicine: An overview of the current knowledge". Stem Cells Int 2019;2019:5493654.
- Mohammadi S, Malek Mohammadi A, Nikbakht M, Norooznezhad AH, Alimoghaddam K, Ghavamzadeh A. Optimizing stem cells mobilization strategies to ameliorate patient outcomes: A review of guide- lines and recommendations. Int J Hematol Oncol Stem Cell Res 2017;11:78-88.
- Gyurkocza B, Sandmaier BM. Conditioning regimens for hematopoietic cell transplantation: One size does not fit all. Blood 2014;124:344–53.
- Hatzimichael E, Tuthill M. Hematopoietic stem cell transplantation. Stem Cells Cloning 2010;3:105-17.
- Hsu YS, Cushing MM. Autologous stem cell mobilization and collection. Hematol Oncol Clin N Am 2016;30:573-89.
- Oyama Y, Parker ER, Brieva J, Guitart J, Statkute L, Verda L, *et al.* High-dose immune suppression and autologous hematopoietic stem cell transplantation in refractory pemphigus foliaceus. Bone Marrow Transplant 2004;34:1097-8.
- Suslova IM, Theodoropoulos DS, Cullen NA, Tetarnikova MK, Tetarnikov AS, Kolchak NA. Pemphigus vulgaris treated with allogeneic hematopoietic stem cell transplantation following non-myeloablative conditioning. Eur Rev Med Pharmacol Sci 2010;14:785-8.
- Vanikar AV, Trivedi HL, Patel RD, Kanodia KV, Modi PR, Shah VR. Allogenic hematopoietic stem cell transplantation in pemphigus vulgaris: A single-center experience. Indian J Dermatol 2012;57:9-11.
- Wang M, Cao C, Sun J, Peng X, Liu Q, Huang L, *et al*. Application of autologous hematopoietic stem cell transplantation for pemphigus. Int J Dermatol 2017;56:296-301.
- Swart JF, Delemarre EM, van Wijk F, Boelens JJ, Kuball J, van Laar JM, et al. Haematopoietic stem cell transplantation for autoimmune diseases. Nat Rev Rheumatol 2017;13:244-56.
- Oyama Y, Barr WG, Statkute L, Corbridge T, Gonda EA, Jovanovic B, et al. Autologous non-myeloablative hematopoietic stem cell transplantation in patients with systemic sclerosis. Bone Marrow Transplant 2007;40:549-55.
- Nash RA, McSweeney PA, Crofford LJ, Abidi M, Chen CS, Godwin JD, *et al.* High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for severe systemic sclerosis: Long-term follow-up of the US multicenter pilot study. Blood 2007;110:1388-96.
- Vonk MC, Marjanovic Z, van den Hoogen FH, Zohar S, Schattenberg AV, Fibbe WE, *et al.* Long-term follow-up results after autologous haematopoietic stem cell transplantation for severe systemic sclerosis. Ann Rheum Dis 2008;67:98-104.
- 29. Farge D, Labopin M, Tyndall A, Fassas A, Mancardi GL, Van Laar J, et al. Autologous hematopoietic stem cell transplantation for autoimmune diseases: An observational study on 12 years' experience from the European Group for Blood and Marrow Transplantation Working Party on Autoimmune Diseases. Haematologica 2010;95:284-92.
- Burt RK, Shah SJ, Dill K, Grant T, Gheorghiade M, Schroeder J, *et al.* Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): An open-label, randomised phase 2 trial. Lancet 2011;378:498-506.
- Henes JC, Schmalzing M, Vogel W, Riemekasten G, Fend F, Kanz L, et al. Optimization of Autologous Stem Cell Transplantation for Systemic Sclerosis A single-center longterm experience in 26 patients with severe organ manifestations. J Rheumatol 2012;39:269-75.
- 32. Burt RK, Oliveira MC, Shah SJ, Moraes DA, Simoes B, Gheorghiade M, *et al.* Cardiac involvement and treatment-related mortality after non-myeloablative haemopoietic stem-cell transplantation with unselected

autologous peripheral blood for patients with systemic sclerosis: A retrospective analysis. Lancet 2013;381:1116-24.

- 33. van Laar JM, Farge D, Sont JK, Naraghi K, Marjanovic Z, Larghero J, et al. Autologous hematopoietic stem cell transplantation vs. intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: A randomized clinical trial. JAMA 2014;311:2490-8.
- Henes JC, Koetter I, Horger M, Schmalzing M, Mueller K, Eick C, *et al.* Autologous stem cell transplantation with thiotepa-based conditioning in patients with systemic sclerosis and cardiac manifestations. Rheumatology (Oxford) 2014;53:919-22.
- 35. Del Papa N, Onida F, Zaccara E, Saporiti G, Maglione W, Tagliaferri E, et al. Autologous hematopoietic stem cell transplantation has better outcomes than conventional therapies in patients with rapidly progressive systemic sclerosis. Bone Marrow Transplant 2017;52:53-8.
- Sullivan KM, Goldmuntz EA, Keyes-Elstein L, McSweeney PA, Pinckney A, Welch B, *et al.* Myeloablative autologous stem-cell transplantation for severe scleroderma. N Engl J Med 2018;378:35-47.
- 37. Nakamura H, Odani T, Yasuda S, Noguchi A, Fujieda Y, Kato M, et al. Autologous haematopoietic stem cell transplantation for Japanese patients with systemic sclerosis: Long-term follow-up on a phase II trial and treatment-related fatal cardiomyopathy. Mod Rheumatol 2018;28:879-84.
- Nair V, Vasdev V, Kumar A, Shankar S, Nair V, Sharma A. Stem cell transplant in systemic sclerosis: An Indian experience. Int J Rheum Dis 2018;21:859-65.
- Walker UA, Saketkoo LA, Distler O. Haematopoietic stem cell transplantation in systemic sclerosis. RMD Open 2018;4:e000533.
- Pasquini MC, Voltarelli J, Atkins HL, Hamerschlak N, Zhong X, Ahn KW, *et al.* Transplantation for autoimmune diseases in North and South America: A report of the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant 2012;18:1471-8.
- British Society of Blood and Marrow Transplantation Indications table. Available from: http://bsbmt.org/indications-table/. [Last accessed on 2021 Feb 10]
- 42. Majhail NS, Farnia SH, Carpenter PA, Champlin RE, Crawford S, Marks DI, et al. Indications for autologous and allogeneic hematopoietic cell transplantation: Guidelines from the American society for blood and marrow transplantation. Biol Blood Marrow Transplant 2015;21:1863-9.
- Papa ND, Pignataro F, Zaccara E, Maglione W, Minniti A. Autologous hematopoietic stem cell transplantation for treatment of systemic sclerosis. Front Immunol 2018;9:2390.
- 44. Burt RK, Oliveira MC, Shah SJ, Moraes DA, Simoes B, Gheorghiade M, et al. Cardiac involvement and treatment-related mortality after nonmyeloablative haemopoietic stem-cell transplantation with unselected autologous peripheral blood for patients with systemic sclerosis: A retrospective analysis. Lancet 2013;381:1116-24.
- 45. Snowden JA, Saccardi R, Allez M, Ardizzone S, Arnold R, Cervera R, *et al.* Haematopoietic SCT in severe autoimmune diseases: Updated guidelines of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 2012;47:770-90.
- 46. Daikeler T, Labopin M, Di Gioia M, Abinun M, Alexander T, Miniati I, et al. Secondary autoimmune diseases occurring after HSCT for an autoimmune disease: A retrospective study of the EBMT autoimmune disease working party. Blood 2011;118:1693-8.
- Kowal-Bielecka O, Fransen J, Avouac J, Becker M, Kulak A, Allanore Y, *et al*. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis 2017;76:1327-39.
- Marmont AM, van Lint MT, Gualandi F, Bacigalupo A. Autologous marrow stem cell transplantation for severe systemic lupus erythematosus of long duration. Lupus 1997;6:545-8.
- Burt RK, Traynor AE, Pope R, Schroeder J, Cohen B, Karlin KH, et al. Treatment of autoimmune disease by intense immunosuppressive conditioning and autologous hematopoietic stem cell transplantation. Blood 1998;92:3505-14.
- Fouillard L, Gorin NC, Laporte JP, Leon A, Brantus JF, Miossee P. Control of severe systemic lupus erythematosus after high-dose immunusuppressive therapy and transplantation of CD34+ purified autologous stem cells from peripheral blood. Lupus 1999;8:320-3.
- 51. Brunner M, Greinix HT, Redlich K, Knöbl P, Smolen J, Leitner G, et al. Autologous blood stem cell transplantation in refractory systemic

lupus erythematosus with severe pulmonary impairment: A case report: Autologous Stem Cell Transplantation in Refractory SLE. Arthritis Rheum 2002;46:1580-4.

- 52. Lisukov IA, Sizikova SA, Kulagin AD, Kruchkova IV, Gilevich AV, Konenkova LP, *et al.* High-dose immunosuppression with autologous stem cell transplantation in severe refractory systemic lupus erythematosus. Lupus 2004;13:89-94.
- Burt RK, Traynor A, Statkute L, Barr WG, Rosa R, Schroeder J, *et al.* Nonmyeloablative hematopoietic stem cell transplantation for systemic lupus erythematosus. JAMA 2006;295:527-35.
- Gualandi F, Bruno B, Van Lint MT, Luchetti S, Uccelli A, Capello E, et al. Autologous stem cell transplantation for severe autoimmune diseases: A 10-year experience. Ann N Y Acad Sci 2007;1110:455-64.
- 55. Loh Y, Oyama Y, Statkute L, Traynor A, Satkus J, Quigley K, et al. Autologous hematopoietic stem cell transplantation in systemic lupus erythematosus patients with cardiac dysfunction: Feasibility and reversibility of ventricular and valvular dysfunction with transplantinduced remission. Bone Marrow Transplant 2007;40:47-53.
- Vanikar AV, Modi PR, Patel RD, Kanodia KV, Shah VR, Trivedi VB, et al. Hematopoietic stem cell transplantation in autoimmune diseases: The Ahmedabad experience. Transplant Proc 2007;39:703-8.
- 57. Alchi B, Jayne D, Labopin M, Demin A, Sergeevicheva V, Alexander T, et al. Autologous haematopoietic stem cell transplantation for systemic lupus erythematosus: Data from the European Group for Blood and Marrow Transplantation registry. Lupus 2013;22:245-53.
- Leng XM, Jiang Y, Zhou DB, Tian XP, Li TS, Wang SJ, *et al.* Good outcome of severe lupus patients with high-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation: A 10-year follow-up study. Clin Exp Rheumatol 2017;35:494-9.
- 59. Burt RK, Han X, Gozdziak P, Yaung K, Morgan A, Clendenan AM, et al. Five year follow-up after autologous peripheral blood hematopoietic stem cell transplantation for refractory, chronic, corticosteroiddependent systemic lupus erythematosus: Effect of conditioning regimen on outcome. Bone Marrow Transplant 2018;53:692-700.
- 60. Cao C, Wang M, Sun J, Peng X, Liu Q, Huang L, et al. Erratum corrige: "Autologous peripheral blood haematopoietic stem cell transplantation for systemic lupus erythematosus: the observation of long-term outcomes in a Chinese centre". C. Cao et al. Clin Exp Rheumatol 2018;36:688.
- Spierings J, van Laar JM. Is there a place for hematopoietic stem cell transplantation in rheumatology? Rheum Dis Clin North Am 2019;45:399-416.
- 62. Munir H, McGettrick HM. Mesenchymal stem cell therapy for autoimmune disease: Risks and rewards. Stem Cells Dev 2015;24:2091-100.
- 63. Xu J. Therapeutic applications of mesenchymal stem cells for systemic lupus erythematosus. Adv Exp Med Biol 2018;1089:73-85.
- Owczarczyk-Saczonek A, Krajewska-Włodarczyk M, Kruszewska A, Placek W, Maksymowicz W, Wojtkiewicz J. Stem cells as potential candidates for psoriasis cell-replacement therapy. Int J Mol Sci 2017;18:2182.
- 65. Chen W, Ren G, Zuo K, Huang X. Complete remission of both immunoglobulin light chain amyloidosis and psoriasis after autologous hematopoietic stem cell transplantation: A case report. Medicine (Baltimore) 2018;97:e13589.
- Kaffenberger BH, Wong HK, Jarjour W, Andritsos LA. Remission of psoriasis after allogeneic, but not autologous, hematopoietic stem-cell transplantation. J Am Acad Dermatol 2013;68:489-92.
- Gardembas-Pain M, Ifrah N, Foussard C, Boasson M, Saint Andre JP, Verret JL. Psoriasis after allogeneic bone marrow transplantation. Arch Dermatol 1990;126:1523.
- Snowden JA, Heaton DC. Development of psoriasis after syngeneic bone marrow transplant from psoriatic donor: Further evidence for adoptive autoimmunity. Br J Dermatol 1997;137:130-2.
- Li X, Li J, Wang L, Niu X, Hou R, Liu R, *et al*. Transmission of psoriasis by allogeneic bone marrow transplantation and blood transfusion. Blood Cancer J 2015;5:e288.
- Chen H, Niu JW, Ning HM, Pan X, Li XB, Li Y, *et al.* Treatment of psoriasis with mesenchymal stem cells. Am J Med 2016;129:e13-4.
- Conget P, Rodriguez F, Kramer S, Allers C, Simon V, Palisson F, et al. Replenishment of type VII collagen and re-epithelialization of chronically ulcerated skin after intradermal administration of allogeneic

mesenchymal stromal cells in two patients with recessive dystrophic epidermolysis bullosa. Cytotherapy 2010;12:429-31.

- 72. Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L, *et al.* Regeneration of the entire human epidermis using transgenic stem cells. Nature 2017;551:327-32.
- El-Darouti M, Fawzy M, Amin I, Abdel Hay R, Hegazy R, Gabr H, et al. Treatment of dystrophic epidermolysis bullosa with bone marrow non-hematopoeitic stem cells: A randomized controlled trial. Dermatol Ther 2016;29:96-100.
- Wagner JE, Ishida-Yamamoto A, McGrath JA, Hordinsky M, Keene DR, Woodley DT, *et al.* Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N Engl J Med 2010;363:629-39.
- 75. Petrof G, Lwin SM, Martinez-Queipo M, Abdul-Wahab A, Tso S, Mellerio JE, *et al*. Potential of systemic allogeneic mesenchymal stromal cell therapy for children with recessive dystrophic epidermolysis bullosa. J Invest Dermatol 2015;135:2319-21.
- Uitto J, Bruckner-Tuderman L, Christiano AM, McGrath JA, Has C, South AP, *et al.* Progress towards treatment and cure of epidermolysis bullosa: Summary of the DEBRA International Research Symposium EB2015. J Invest Dermatol 2016;136:352e8.
- Liang L, Bickenbach JR. Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells 2002;20:21-31.
- Otero-Viñas M, Falanga V. Mesenchymal stem cells in chronic wounds: The spectrum from basic to advanced therapy. Adv Wound Care (New Rochelle) 2016;5:149-63.
- 79. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, *et al.* Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 2007;13:1299-312.
- Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, *et al.* Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: A double-blind, randomized, controlled trial. Diabetes Res Clin Pract 2011;92:26-36.
- Legué E, Sequeira I, Nicolas JF. Hair follicle renewal: Authentic morphogenesis that depends on a complex progression of stem cell lineages. Development 2010;137:569-77.
- Mohanty S, Kumar A, Dhawan J, Sreenivas V, Gupta S. Noncultured extracted hair follicle outer root sheath cell suspension for transplantation in vitiligo. Br J Dermatol 2011;164:1241-6.
- 83. Vinay K, Dogra S, Parsad D, Kanwar AJ, Kumar R, Minz RW, et al. Clinical and treatment characteristics determining therapeutic outcome in patients undergoing autologous non-cultured outer root sheath hair follicle cell suspension for treatment of stable vitiligo. J Eur Acad Dermatol Venereol 2015;29:31-7.
- Fisch SC, Gimeno ML, Phan JD, Simerman AA, Dumesic DA, Perone MJ, et al. Pluripotent nontumorigenic multilineage differentiating stress enduring cells (Muse cells): A seven-year retrospective. Stem Cell Res Ther 2017;8:227.
- Lacy MQ, Hogan WJ, Gertz MA, Dispenzieri A, Rajkumar SV, Hayman S, et al. Successful treatment of scleromyxedema with autologous peripheral blood stem cell transplantation. Arch Dermatol 2005;141:1277-82.
- Illa I, de la Torre C, Rojas-Garcia R, Altes A, Blesa R, Sierra J, *et al.* Steady remission of scleromyxedema 3 years after autologous stem cell transplantation: An *in vivo* and *in vitro* study. Blood 2006;108:773-4.
- Anderi R, Makdissy N, Azar A, Rizk F, Hamade A. Cellular therapy with human autologous adipose-derived adult cells of stromal vascular fraction for alopecia areata. Stem Cell Res Ther 2018;9:141.
- Shin H, Ryu HH, Kwon O, Park BS, Jo SJ. Clinical use of conditioned media of adipose tissue-derived stem cells in female pattern hair loss: A retrospective case series study. Int J Dermatol 2015;54:730-5.
- Gentile P, Scioli MG, Bielli A, Orlandi A, Cervelli V. Stem cells from human hair follicles: First mechanical isolation for immediate autologous clinical use in androgenetic alopecia and hair loss. Stem Cell Investig 2017;4:58.
- Elmaadawi IH, Mohamed BM, Ibrahim ZA, Abdou SM, El Attar YA, Youssef A, *et al.* Stem cell therapy as a novel therapeutic intervention for resistant cases of alopecia areata and androgenetic alopecia. J Dermatolog Treat 2018;29:431-40.
- 91. Li Y, Yan B, Wang H, Li H, Li Q, Zhao D, et al. Hair regrowth in

alopecia areata patients following Stem Cell Educator therapy. BMC Med 2015;13:87.

- Stevens HP, Donners S, de Bruijn J. Introducing Platelet-Rich Stroma: Platelet-Rich Plasma (PRP) and Stromal Vascular Fraction (SVF) Combined for the Treatment of Androgenetic Alopecia. Aesthet Surg J 2018;38:811-22.
- Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009;360:692-8.
- Gupta RK, Abdul-Jawad S, McCoy LE, Mok HP, Peppa D, Salgado M, et al. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stemcell transplantation. Nature 2019;568:244-8.
- Menaa F. Viral etiology of merkel cell carcinoma: Implications in diagnosis, prognosis, therapy and prevention. Int J Clin Dermatol Res 2015;3:1-2.
- Sunshine JC, Jahchan NS, Sage J, Choi J. Are there multiple cells of origin of Merkel cell carcinoma? Oncogene 2018;37:1409-16.
- Waldmann V, Goldschmidt H, Jäckel A, Deichmann M, Hegenbart U, Hartschuh W, *et al.* Transient complete remission of metastasized Merkel cell carcinoma by high-dose polychemotherapy and autologous peripheral blood stem cell transplantation. Br J Dermatol 2000;143:837-9.
- Menaa F, Houben R, Eyrich M, Broecker EB, Becker JC, Wischhusen J. Stem cells, melanoma and cancer stem cells: The good, the bad and the evil? G Ital Dermatol Venereol 2009;144:287-96.
- Chow P, Moore S, Kaushik G. Melanoma stem cells: The past, present and future. J Stem Cell Res Ther 2018;4:89-90.

- 100. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, *et al.* Identification of cells initiating human melanomas. Nature 2008;451:345-9.
- 101. Menaa F. Latest approved therapies for metastatic melanoma: What comes next? J Skin Cancer 2013;2013:735282.
- 102. Houben R, Wischhusen J, Menaa F, Synwoldt P, Schrama D, Bröcker EB, *et al*. Melanoma stem cells: Targets for successful therapy? J Dtsch Dermatol Ges 2008;6:541-6.
- 103. Kim JH, Jung M, Kim HS, Kim YM, Choi EH. Adipose-derived stem cells as a new therapeutic modality for ageing skin. Exp Dermatol 2011;20:383-7.
- Kim WS, Park BS, Park SH, Kim HK, Sung JH. Antiwrinkle effect of adipose-derived stem cell: Activation of dermal fibroblast by secretory factors. J Dermatol Sci 2009;53:96-102.
- Mehrabani D, Manafi N. Role of cultured skin fibroblasts in aesthetic and plastic surgery. World J Plast Surg 2013;2:2-5.
- 106. Indian Council of Medical Research. National Guidelines for Stem Cell Research; 2017. Available from: http://www.icmr.nic.in/guidelines/ Guidelines_for_stem_cell_research_2017.pdf. [Last accessed on 2019 Dec 26]
- Sabha L. Government of India, Ministry of Health and Family Welfare, Lok Sabha, Unstarred Question No. 3448. Published Online; 2017.
- Tiwari SS, Desai PN. Unproven stem cell therapies in India: Regulatory challenges and proposed paths forward. Cell Stem Cell 2018;23:649-52.