Generic selectors
Exact matches only
Search in title
Search in content
Filter by Categories
15th National Conference of the IAOMFP, Chennai, 2006
Abstracts from current literature
Acne in India: Guidelines for management - IAA Consensus Document
Art & Psychiatry
Association Activities
Association Notes
Award Article
Book Review
Brief Report
Case Analysis
Case Letter
Case Letters
Case Notes
Case Report
Case Reports
Clinical and Laboratory Investigations
Clinical Article
Clinical Studies
Clinical Study
Conference Oration
Conference Summary
Continuing Medical Education
Cosmetic Dermatology
Current Best Evidence
Current Issue
Current View
Derma Quest
Dermato Surgery
Dermatosurgery Specials
Dispensing Pearl
Do you know?
Drug Dialogues
Editor Speaks
Editorial Remarks
Editorial Report
Editorial Report - 2007
Editorial report for 2004-2005
Fourth All India Conference Programme
From Our Book Shelf
From the Desk of Chief Editor
Get Set for Net
Get set for the net
Guest Article
Guest Editorial
How I Manage?
IADVL Announcement
IADVL Announcements
IJDVL Awards
IJDVL Awards 2018
IJDVL Awards 2019
IJDVL Awards 2020
IJDVL International Awards 2018
Images in Clinical Practice
In Memorium
Inaugural Address
Knowledge From World Contemporaries
Leprosy Section
Letter in Response to Previous Publication
Letter to Editor
Letter to the Editor
Letter to the Editor - Case Letter
Letter to the Editor - Letter in Response to Published Article
Letter to the Editor - Observation Letter
Letter to the Editor - Study Letter
Letter to the Editor - Therapy Letter
Letter to the Editor: Articles in Response to Previously Published Articles
Letters in Response to Previous Publication
Letters to the Editor
Letters to the Editor - Letter in Response to Previously Published Articles
Letters to the Editor: Case Letters
Letters to the Editor: Letters in Response to Previously Published Articles
Medicolegal Window
Miscellaneous Letter
Net Case
Net case report
Net Image
Net Letter
Net Quiz
Net Study
New Preparations
News & Views
Observation Letter
Observation Letters
Original Article
Original Contributions
Pattern of Skin Diseases
Pediatric Dermatology
Pediatric Rounds
Presedential Address
Presidential Address
Presidents Remarks
Report of chief editor
Report of Hon : Treasurer IADVL
Report of Hon. General Secretary IADVL
Research Methdology
Research Methodology
Resident page
Resident's Page
Resident’s Page
Residents' Corner
Residents' Corner
Residents' Page
Review Article
Review Articles
Revision Corner
Self Assessment Programme
Seminar: Chronic Arsenicosis in India
Seminar: HIV Infection
Short Communication
Short Communications
Short Report
Special Article
Specialty Interface
Study Letter
Symposium - Contact Dermatitis
Symposium - Lasers
Symposium - Pediatric Dermatoses
Symposium - Psoriasis
Symposium - Vesicobullous Disorders
Symposium Aesthetic Surgery
Symposium Dermatopathology
Symposium-Hair Disorders
Symposium-Nails Part I
Symposium-Nails-Part II
Systematic Reviews and Meta-analyses
Systematic Reviews and Meta-analysis
Therapeutic Guidelines
Therapeutic Guidelines - IADVL
Therapy Letter
View Point
What’s new in Dermatology
View/Download PDF

Translate this page into:

Letter to the Editor
doi: 10.4103/0378-6323.154789
PMID: 25851757

Histopathological evidence of efficacy of microneedle radiofrequency for treatment of axillary hyperhidrosis

Farahnaz Fatemi Naeini1 , Ali Saffaei2 , Mohsen Pourazizi3 , Bahareh Abtahi-Naeini1
1 Skin Diseases and Leishmaniasis Research Center, Department of Dermatology, Isfahan University of Medical sciences, Isfahan, Iran
2 Department of Clinical and Pharmacy Practice Pharmacy Students' Research Committee, Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy, Isfahan University of Medical sciences, Isfahan, Iran
3 Students' Research Committee, Department of Dermatology, Semnan University of Medical Sciences, Semnan, Iran

Correspondence Address:
Bahareh Abtahi-Naeini
Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan
How to cite this article:
Naeini FF, Saffaei A, Pourazizi M, Abtahi-Naeini B. Histopathological evidence of efficacy of microneedle radiofrequency for treatment of axillary hyperhidrosis. Indian J Dermatol Venereol Leprol 2015;81:288-290
Copyright: (C)2015 Indian Journal of Dermatology, Venereology, and Leprology


A major concern about the treatment of hyperhidrosis is the lack of clinical guidelines. Many medical (e.g. Botulinum toxin type A) and surgical methods have been used to overcome excessive sweating with variable results. [1] Energy-based devices have recently gained increasing acceptance for the treatment of many skin disorders and cosmetic conditions including facial rhytides and skin laxity. [2],[3] Recently, some researchers clinically evaluated the use of radiofrequency (RF) energy in the treatment of primary axillary hyperhidrosis (PAH), which suggest that the bipolar radiofrequency devices are effective in reducing the amount of sweating, [4],[5],[6] but very limited published data on histological confirmation of successful treatment is available.

We report the successful treatment of a 25 year old man with refractory primary axillary hyperhidrosis with fractionated microneedle radiofrequency (FMR). Topical treatment with aluminum chloride had been ineffective and the patient had discontinued it 6 months ago. He had received multiple sessions of botulinum toxin injections in the area, the last injection being 4 years ago. Systemic treatment with anticholinergic agents had to be stopped due to severe adverse effects.

The patient underwent four treatment sessions of fractionated microneedle radiofrequency FMR (INFINI; Lutronic, Goyang, Korea) at 2-week intervals. Pre-treatment results of the iodine-starch test are illustrated in [Figure - 1].

Figure 1: Starch– iodine test. Starch– iodine photographs of the left axilla of subject at baseline (blue-black sedimentation)

The procedure was performed in four steps. Step 1: Sizing of the area to be treated and marking that area after starch-iodine test. Step 2: Topical anesthesia under occlusion. Step 3: Placement of hand piece on designated areas to deliver the therapy. Step 4: Dressing with sterile vaseline gauze.

The following settings were used: microneedle penetrating depth of 2.5- to 3-mm, level strength of 6 to 9, and RF time of 140- to 180-ms.

The biopsy sample taken 30 days post-treatment showed reduction in the number and size of both apocrine and eccrine glands after treatment [Figure - 2]. The density of sweat glands per low power field at base line and 30 days post-treatment was  approximately 66 and 40, respectively. A mild lympho-histiocytic infiltrate, peri-glandular fibrosis, and neovascularization were identified surrounding the atrophic glands, suggestive of post-traumatic reactive changes. Coagulation changes of the glands (eosinophilic body) due to thermolysis is depicted in [Figure - 3].

Figure 2: Baseline biopsy of sweat glands (Right) and the posttreatment appearance of sweat glands (left) which show decrease in the number and size of both apocrine and eccrine glands after treatment. (Hematoxylin and eosin, ×40)
Figure 3: Coagulation changes of the glands due to thermolysis (arrow) (Hematoxylin and eosin, ×100)

The only adverse effects observed were erythema and pin point bleeding in the immediate post-procedure period [Figure - 4].

Figure 4: Erythema and pin point bleeding after FMR

The results of the iodine-starch test at the end of treatment are shown in [Figure - 5]. During the 6-month follow-up, the patient had no recurrence.

Figure 5: Starch– iodine test. Normal results of starch– iodine test after four sessions of fractionated microneedle radiofrequency,(White sedimentation)

Fractionated microneedle radiofrequency is a minimally invasive method that utilizes microwave energy to heat the target tissue without destroying the epidermis, by using rapid penetration with microneedle. [7],[8]

The radiofrequency energy from the tip of the microneedles causes direct thermal injury at the interface between deep dermis and subcutis, which results in thermolysis and decrease in the size and density of the apocrine glands, [9] while minimizing damage to surrounding tissue.

Johnson et al., studied the microwave thermolysis of sweat glands and demonstrated that microwave technology is well suited for targeting sweat glands while allowing for protection of both the upper skin layers and the structures beneath the subcutaneous fat. They demonstrated gross pathological and histological response with generation of thermally affected zones in the desired target region while providing protection to the upper skin layers. [10]

Kushikata et al., in serial skin biopsy samples taken post-treatment, showed progressively, necrosis of sweat glands, reduction of viable sweat gland structures, and peri-glandular fibrosis, suggestive of post-traumatic reactive changes. [11]

Our patients showed similar histologic findings of destruction of eccrine and apocrine glands and associated cell necrosis that localized at the junction of deep dermis and subcutaneous tissue. A clear decrease of viable sweat gland structures was seen compared to baseline sample with a sparse inflammatory infiltrate. [5],[10],[12]

Even though fractionated microneedle radiofrequency can be used as an effective, harmless, and nonaggressive method for treatment of primary axillary hyperhidrosis, further studies are needed to confirm and clearly define the histopathological changes induced in the skin by radiofrequency.


The authors would like to thank Dr. Zahra Bayat (dermatopathologist) for her help with providing histopathological pictures.

Komericki P, Ardjomand N. Hyperhidrosis of face and scalp: Repeated successful treatment with botulinum toxin type A. Indian J Dermatol Venereol Leprol 2012;78:201-2.
[Google Scholar]
Berube D, Renton B, Hantash BM. A predictive model of minimally invasive bipolar fractional radiofrequency skin treatment. Lasers Surg Med 2009;41:473-8.
[Google Scholar]
Hantash BM, Ubeid AA, Chang H, Kafi R, Renton B. Bipolar fractional radiofrequency treatment induces neoelastogenesis and neocollagenesis. Lasers Surg Med 2009;41:1-9.
[Google Scholar]
Hong HC, Lupin M, O′Shaughnessy KF. Clinical evaluation of a microwave device for treating axillary hyperhidrosis. Dermatol Surg 2012;38:728-35.
[Google Scholar]
Kim M, Shin JY, Lee J, Kim JY, Oh SH. Efficacy of fractional microneedle radiofrequency device in the treatment of primary axillary hyperhidrosis: A pilot study. Dermatology 2013;227:243-9.
[Google Scholar]
Fatemi Naeini F, Abtahi-Naeini B, Pourazizi M, Nilforoushzadeh MA, Mirmohammadkhani M. Fractionated microneedle radiofrequency for treatment of primary axillary hyperhidrosis: A sham control study. Australas J Dermatol 2014; [Epub ahead of print].
[Google Scholar]
Lolis MS, Goldberg DJ. Radiofrequency in cosmetic dermatology: A review. Dermatol Surg 2012;38:1765-76.
[Google Scholar]
Cho SI, Chung BY, Choi MG, Baek JH, Cho HJ, Park CW, et al. Evaluation of the clinical efficacy of fractional radiofrequency microneedle treatment in acne scars and large facial pores. Dermatol Surg 2012;38:1017-24.
[Google Scholar]
Grice K, Sattar H, Baker H. The effect of ambient humidity on transepidermal water loss. J Invest Dermatol 1972;58:343-6.
[Google Scholar]
Johnson JE, O′Shaughnessy KF, Kim S. Microwave thermolysis of sweat glands. Lasers Surg Med 2012;44:20-5.
[Google Scholar]
Nobuharu Kushikata M, Kim J. Histologic assessment of biopsy samples taken before and after the miradry procedure performed on a patient with axillary hyperhidrosis. Miramar Labs.Available at: [Last accessed on 2013 Dec 21].
[Google Scholar]
Lee SJ, Chang KY, Suh DH, Song KY, Ryu HJ. The efficacy of a microwave device for treating axillary hyperhidrosis and osmidrosis in Asians: A preliminary study. J Cosmet Laser Ther 2013;15:255-9.
[Google Scholar]

Fulltext Views

PDF downloads
Show Sections