Generic selectors
Exact matches only
Search in title
Search in content
Search in posts
Search in pages
Filter by Categories
15th National Conference of the IAOMFP, Chennai, 2006
Abstract
Abstracts from current literature
Acne in India: Guidelines for management - IAA Consensus Document
Addendum
Announcement
Art & Psychiatry
Article
Articles
Association Activities
Association Notes
Award Article
Book Review
Brief Report
Case Analysis
Case Letter
Case Letters
Case Notes
Case Report
Case Reports
Clinical and Laboratory Investigations
Clinical Article
Clinical Studies
Clinical Study
Commentary
Conference Oration
Conference Summary
Continuing Medical Education
Correspondence
Corrigendum
Cosmetic Dermatology
Cosmetology
Current Best Evidence
Current View
Derma Quest
Dermato Surgery
Dermatopathology
Dermatosurgery Specials
Dispensing Pearl
Do you know?
Drug Dialogues
e-IJDVL
Editor Speaks
Editorial
Editorial Remarks
Editorial Report
Editorial Report - 2007
Editorial report for 2004-2005
Errata
Erratum
Focus
Fourth All India Conference Programme
From Our Book Shelf
From the Desk of Chief Editor
General
Get Set for Net
Get set for the net
Guest Article
Guest Editorial
History
How I Manage?
IADVL Announcement
IADVL Announcements
IJDVL Awards
IJDVL AWARDS 2015
IJDVL Awards 2018
IJDVL Awards 2019
IJDVL Awards 2020
IJDVL International Awards 2018
Images in Clinical Practice
In Memorium
Inaugural Address
Index
Knowledge From World Contemporaries
Leprosy Section
Letter in Response to Previous Publication
Letter to Editor
Letter to the Editor
Letter to the Editor - Case Letter
Letter to the Editor - Letter in Response to Published Article
LETTER TO THE EDITOR - LETTERS IN RESPONSE TO PUBLISHED ARTICLES
Letter to the Editor - Observation Letter
Letter to the Editor - Study Letter
Letter to the Editor - Therapy Letter
Letter to the Editor: Articles in Response to Previously Published Articles
Letters in Response to Previous Publication
Letters to the Editor
Letters to the Editor - Letter in Response to Previously Published Articles
Letters to the Editor: Case Letters
Letters to the Editor: Letters in Response to Previously Published Articles
Medicolegal Window
Messages
Miscellaneous Letter
Musings
Net Case
Net case report
Net Image
Net Letter
Net Quiz
Net Study
New Preparations
News
News & Views
Obituary
Observation Letter
Observation Letters
Oration
Original Article
ORIGINAL CONTRIBUTION
Original Contributions
Pattern of Skin Diseases
Pearls
Pediatric Dermatology
Pediatric Rounds
Perspective
Presedential Address
Presidential Address
Presidents Remarks
Quiz
Recommendations
Regret
Report
Report of chief editor
Report of Hon : Treasurer IADVL
Report of Hon. General Secretary IADVL
Research Methdology
Research Methodology
Resident page
Resident's Page
Resident’s Page
Residents' Corner
Residents' Corner
Residents' Page
Retraction
Review
Review Article
Review Articles
Revision Corner
Self Assessment Programme
SEMINAR
Seminar: Chronic Arsenicosis in India
Seminar: HIV Infection
Short Communication
Short Communications
Short Report
Special Article
Specialty Interface
Studies
Study Letter
Supplement-Photoprotection
Supplement-Psoriasis
Symposium - Contact Dermatitis
Symposium - Lasers
Symposium - Pediatric Dermatoses
Symposium - Psoriasis
Symposium - Vesicobullous Disorders
SYMPOSIUM - VITILIGO
Symposium Aesthetic Surgery
Symposium Dermatopathology
Symposium-Hair Disorders
Symposium-Nails Part I
Symposium-Nails-Part II
Systematic Reviews and Meta-analysis
Tables
Technology
Therapeutic Guidelines
Therapeutic Guidelines - IADVL
Therapeutics
Therapy
Therapy Letter
View Point
Viewpoint
What’s new in Dermatology
View/Download PDF

Translate this page into:

Letter to the Editor
2010:76:4;417-418
doi: 10.4103/0378-6323.66591
PMID: 20657130

Liposomal zinc phthalocyanine as a potential agent for photodynamic therapy of leishmaniasis

Ameneh Sazgarnia1 , Mohammad Hossein Bahreyni -Toosi1 , Pouran Layegh2 , Omid Rajabi3 , Rahman Movahhed Ghodsinia4
1 Department of Medical Physics, Research Center of Medical Physics, Qaem Hospital, Mashhad, Iran
2 Department of Dermatology, Research Centre for Skin Disease & Cutaneous leishmaniasis, Qaem Hospital, Mashhad, Iran
3 Department of Medicinal Chemistry, Mashad University of Medical Sciences, Mashhad, Iran
4 Faculty of Medicine, Mashad University of Medical Sciences, Mashhad, Iran

Correspondence Address:
Ameneh Sazgarnia
Department of Medical Physics, Research Center of Medical Physics, Mashad University of Medical Sciences, Mashhad
Iran
How to cite this article:
Sazgarnia A, Bahreyni -Toosi MH, Layegh P, Rajabi O, Ghodsinia RM. Liposomal zinc phthalocyanine as a potential agent for photodynamic therapy of leishmaniasis. Indian J Dermatol Venereol Leprol 2010;76:417-418
Copyright: (C)2010 Indian Journal of Dermatology, Venereology, and Leprology

Sir,

Developing a new therapeutic method for leishmaniasis, besides obtaining a prompt treatment response that prevents lesions′ progression and scarring, is significant success in the treatment of the disease. Regarding the superficiality of the leishmaniasis lesions, there is anticipation that photo-dynamic therapy (PDT) could be beneficial in treating or at least preventing the lesions′ progression.

Pharmacokinetic characteristics of zinc phthalocyanine (ZnPc) make this molecule a promising second-generation photosensitizer. ZnPc is not water-soluble, and aggregation of the molecules decreases its photosensitizing effect. In this paper, efficacy of PDT with liposomal ZnPc was assessed on Leishmania parasite.

ZnPc was purchased from Sigma-Aldrich (97% dye content). In order to formulate the photosensitizer in liposomal form, 300 mg of egg lecithin, 100 mg of cholesterol, 400 mg of glucose and a precise amount of zinc phthalocyanine were dissolved in 10 mL of pyridine. The solution was frozen using particular processes by dry ice and subsequently dried via freeze-dryer (Labco Co., USA) during two consecutive stages of −40°C and −25°C temperature designed for 24 hours. [1] Eventually, to prepare the final stable solution, 2 mL of distilled water was added. Based on the spectroscopic results from the liposomal suspension supernatant, the encapsulation rate of ZnPc was determined to be more than 85% and average of particle size was estimated to be 1.6 mm.

Leishmania major parasites (MRHO/IR/75/ER) were provided by Iranian Pasteur Institute, grown in Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with 10% heat-inactivated fetal bovine serum, pH 7.4, and antibiotic agents in a 25°C incubator. [2],[3] Then the stationary-phase promastigotes underwent pre-planned in vitro treatments. [3] First, the parasite suspension was divided into four groups and incubated at the liposomal ZnPc concentrations (0, 1, 5, 10 mM) for 3 hours at 25°C. [4] After parasite washing in phosphate buffer solution (PBS), it was suspended again in a complete culture medium and spread in the wells of two 24-well sterile plates. One of them underwent illumination, and the other was maintained in dark. An incoherent light source, such as LUMACARE, equipped with fiber-optic and filter of 670 ± 20 nm was utilized for illumination at intensity and fluence of 45 mW/cm 2 and 100 J/cm 2 , respectively.

Twenty-four hours post-treatment, the parasite survival was determined by3-(4,5-Dimethylthiazol2-yl)-2.5-diphenyltetrazolium bromide (MTT) assay. The treated samples were incubated in a 96-well plate with the MTT reagent (10 mg/mL) for 40 minutes at 24°C, and optical density of the formazan crystals was measured at 545 nm using a 96-well microplate reader (AWARENESS, Model 3200). The experiments were repeated SPSS 16 using Kolmogorov-Smirnov normality test, ANOVA and Tukey test and analyzed three times.

As shown in [Figure - 1], among the groups which received complete PDT, minimum survival rate was obtained at 10 μM (12.4%), which was significant in comparison with the other concentrations (P< 0.005), while no significant reduction was confirmed between the 1-(Micromolar) μM group and control group. Without illumination, at 1 μM, reduction of parasite survival was significant in comparison with the control group, while it was not significant between 5 and 10 μM.

On the basis of an exponential trend line fitted on the PDT data (R 2 = 0.97), ED 50 and ED 90 of liposomal ZnPc after 100 J/cm 2 illumination were obtained to be about 3.5 and 11.5 mM, respectively.

Regarding our data, liposomal ZnPc showed toxicity on the Leishmania parasite in darkness, but the toxic effects did not increase with increasing dye concentration. This finding differs from the study by Scober et al, which reported 5% toxicity at a 15-μM of ZnPc concentration. [5] Also, they estimated ED 50 and ED 90 of ZnPc on two strains of Leishmania after 10 J/cm 2 laser irradiation. ED 50 was 6.05 and 6.45 mM for L. chagasi and L. panamensis, respectively, and E 90 was >15 mM for both strains. In our study, ED 50 and ED 90 of liposomal ZnPc after 100 J/cm 2 illumination were 3.5 and 11.5 mM, respectively. These differences could be due to the liposomal form of the dye, leading to an additional uptake by the parasite. In order to design a more efficient treatment scheme, we suggest this study be done with lower dye concentrations and a laser.

Dutta et al, demonstrated the cytolysis of Leishmania amazonensis with a combination of aluminum phthalocyanine chloride (AlPhCl) and light. [3] On the basis of their findings and in consideration of estimated ED 50 of AlPhCl by Scober et al, (0.17 and 0.0033 after 10 J/cm 2 illumination), [5] it seems that ZnPc cannot compete with AlPhCl even as liposomal. Obviously, in order to make a confident judgment, another study in similar conditions using ZnPc and AlPhCl should be done.

References
1.
Li C, Deng Y. A novel method for the preparation of liposomes: Freeze drying of monophase solutions. J Pharm Sci 2004;93:1403-14.
[Google Scholar]
2.
Weiss R, Scheiblhofer S, Thalhamer J, Bickert T, Richardt U, Fleischer B, et al. Epidermal inoculation of Leishmania-antigen by gold bombardment results in a chronic form of leishmaniasis. Vaccine 2007;25:25-33.
[Google Scholar]
3.
Dutta S, Ray D, Kolli BK, Chang KP. Photodynamic Sensitization of Leishmania amazonensis in both extracellular and intracellular stages with aluminum phthalocyanine chloride for photolysis in vitro. Antimicrob Agents Chemother 2005;49:4474-84.
[Google Scholar]
4.
Cristobal J, Stockert JC, Villanueva A, Rello-Varona S, Juarranz A, Canete M. Caspase-2: A possible trigger of apoptosis induced in A-549 tumor cells by ZnPc photodynamic treatment. Int J Oncol 2006;28:1057-63.
[Google Scholar]
5.
Escobar P, Hernαndez IP, Rueda CM, Martνnez F, Pαez E. Photodynamic activity of aluminium(III) and zinc(II) phthalocyanines in Leishmania promastigotes. Biomedica 2006;26:49-56.
[Google Scholar]

Fulltext Views
223

PDF downloads
68
Show Sections