Generic selectors
Exact matches only
Search in title
Search in content
Search in posts
Search in pages
Filter by Categories
15th National Conference of the IAOMFP, Chennai, 2006
Abstract
Abstracts from current literature
Acne in India: Guidelines for management - IAA Consensus Document
Addendum
Announcement
Art & Psychiatry
Article
Articles
Association Activities
Association Notes
Award Article
Book Review
Brief Report
Case Analysis
Case Letter
Case Letters
Case Notes
Case Report
Case Reports
Clinical and Laboratory Investigations
Clinical Article
Clinical Studies
Clinical Study
Commentary
Conference Oration
Conference Summary
Continuing Medical Education
Correspondence
Corrigendum
Cosmetic Dermatology
Cosmetology
Current Best Evidence
Current View
Derma Quest
Dermato Surgery
Dermatopathology
Dermatosurgery Specials
Dispensing Pearl
Do you know?
Drug Dialogues
e-IJDVL
Editor Speaks
Editorial
Editorial Remarks
Editorial Report
Editorial Report - 2007
Editorial report for 2004-2005
Errata
Erratum
Focus
Fourth All India Conference Programme
From Our Book Shelf
From the Desk of Chief Editor
General
Get Set for Net
Get set for the net
Guest Article
Guest Editorial
History
How I Manage?
IADVL Announcement
IADVL Announcements
IJDVL Awards
IJDVL AWARDS 2015
IJDVL Awards 2018
IJDVL Awards 2019
IJDVL Awards 2020
IJDVL International Awards 2018
Images in Clinical Practice
In Memorium
Inaugural Address
Index
Knowledge From World Contemporaries
Leprosy Section
Letter in Response to Previous Publication
Letter to Editor
Letter to the Editor
Letter to the Editor - Case Letter
Letter to the Editor - Letter in Response to Published Article
LETTER TO THE EDITOR - LETTERS IN RESPONSE TO PUBLISHED ARTICLES
Letter to the Editor - Observation Letter
Letter to the Editor - Study Letter
Letter to the Editor - Therapy Letter
Letter to the Editor: Articles in Response to Previously Published Articles
Letters to the Editor
Letters to the Editor - Letter in Response to Previously Published Articles
Letters to the Editor: Case Letters
Letters to the Editor: Letters in Response to Previously Published Articles
Medicolegal Window
Messages
Miscellaneous Letter
Musings
Net Case
Net case report
Net Image
Net Letter
Net Quiz
Net Study
New Preparations
News
News & Views
Obervation Letter
Obituary
Observation Letter
Observation Letters
Oration
Original Article
ORIGINAL CONTRIBUTION
Original Contributions
Pattern of Skin Diseases
Pearls
Pediatric Dermatology
Pediatric Rounds
Perspective
Presedential Address
Presidential Address
Presidents Remarks
Quiz
Recommendations
Regret
Report
Report of chief editor
Report of Hon : Treasurer IADVL
Report of Hon. General Secretary IADVL
Research Methdology
Research Methodology
Resident page
Resident's Page
Resident’s Page
Residents' Corner
Residents' Corner
Residents' Page
Retraction
Review
Review Article
Review Articles
Revision Corner
Self Assessment Programme
SEMINAR
Seminar: Chronic Arsenicosis in India
Seminar: HIV Infection
Short Communication
Short Communications
Short Report
Special Article
Specialty Interface
Studies
Study Letter
Supplement-Photoprotection
Supplement-Psoriasis
Symposium - Contact Dermatitis
Symposium - Lasers
Symposium - Pediatric Dermatoses
Symposium - Psoriasis
Symposium - Vesicobullous Disorders
SYMPOSIUM - VITILIGO
Symposium Aesthetic Surgery
Symposium Dermatopathology
Symposium-Hair Disorders
Symposium-Nails Part I
Symposium-Nails-Part II
Tables
Technology
Therapeutic Guidelines
Therapeutic Guidelines - IADVL
Therapeutics
Therapy
Therapy Letter
View Point
Viewpoint
What’s new in Dermatology
View/Download PDF
Letter to the Editor
2009:75:6;622-623
doi: 10.4103/0378-6323.57735
PMID: 19915254

Opioid-mediated immunosuppression as a novel mechanism for the immunomodulatory effect of ultraviolet radiation

Mohammad Kazem Fallahzadeh, Mohammad Reza Namazi
 Department of Dermatology, Shiraz University of Medical Sciences, Shiraz, Iran

Correspondence Address:
Mohammad Reza Namazi
Dermatology Department, Faghihi Hospital, Shiraz
Iran
How to cite this article:
Fallahzadeh MK, Namazi MR. Opioid-mediated immunosuppression as a novel mechanism for the immunomodulatory effect of ultraviolet radiation. Indian J Dermatol Venereol Leprol 2009;75:622-623
Copyright: (C)2009 Indian Journal of Dermatology, Venereology, and Leprology

Sir,

The suppressive effect of ultraviolet (UV) radiation on the immune system has been harnessed elegantly in the treatment of many dermatological disorders. Several pathways for UV-induced immune suppression are suggested.

UV light induces the release of immunosuppressive cytokines from keratinocytes and immunocytes. [1] It inhibits antigen presentation of the antigen-presenting cells through suppression of the expression of major histocompatibility complex II and other costimulatory molecules. [1] UV light causes apoptosis of leukocytes and induces regulatory T cells with suppressor activity. [1] UV radiation converts trans-urocanic acid into cis-urocanic acid, which exerts immunosuppressive effects. [1] UVB-induced DNA damage is another major molecular trigger of UV-mediated immunosuppression. [1] Herein, we would like to shed further light on UV-induced immunosuppression by providing a novel mechanism.

When given a blinded choice between UV and non-UV-emitting tanning beds, frequent tanners overwhelmingly prefer UV beds. [2] A non-UV-emitting tanning bed is similar to a UV-emitting bed except that it has a filter that is opaque to the UV light. [2] A questionnaire testing shows that frequent tanning has features of an addictive behavior. [3] Despite the presence of some controversies, research shows that UV radiation can induce endorphin production by keratinocytes, which may explain the addiction to tanning seen in frequent tanners. [4] Moreover, in a recent study on a group of frequent tanners, naltrexone, an endorphin antagonist, induced the withdrawal symptoms in frequent tanners while such symptoms were not observed with placebo or with infrequent tanners receiving naltrexone. [5]

Opioids exert several immunosuppressive effects. Injection of morphine to vertebrate animals resulted in deficient macrophage function. [6] Morphine antagonizes interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α) induced chemotaxis in human leukocytes. [6] It upregulates neutral endopeptidase in granulocytes. [6] Neutral endopeptidase is an important control factor for the inflammatory responses in skin disorders. Morphine treatment increases IL-4 and IL-5 levels and decreases the IL-2 and interferon-γ (IFN-γ) levels. [7] Therefore, by promoting the production of pro-T-helper-2 (Th2) cytokines and inhibition of pro-Th1 cytokines, it causes committing Th0 cell to a Th2 phenotype, with the resultant impairment of cellular immunity. [7]

Morphine inhibits the expression of antigenic markers for T-helper cells and also the respiratory burst of these cells. [6] This drug suppresses antibody production in response to the T cell-dependent antigens. [6] It also leads to elevated plasma levels of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and glucocorticoids. [6] Therefore, through suppression of the immune system, morphine increases the susceptibility to various types of opportunistic infections. [6]

A functional relationship between endogenous opiates and the immune system is based on the demonstration of special opiate receptors (µ3) on immune cells, which enables these compounds to directly inhibit the immune activities. [6] Under stressful conditions, endogenous morphine helps other immunosuppressive compounds such as ACTH and IL-10 to lower the hyperstimulation of stimulatory molecules such as IL-1 and TNF-α. [6] Morphine stimulation by µ3 leads to nitric oxide (NO) release. [6] Basal unstimulated NO is released in the body to oppose the pro-inflammatory state and to downregulate immuoncytes. [6] Morphine may enhance this inhibitory state by enhancing the normal basal actions of NO. [6]

In short, given the immunomodulatory effects of opioids, we suggest that a part of UV-induced immunosuppression occurs through the release of endogenous opiates [Figure - 1]. Therefore, we conclude that topical opioid antagonists could serve as a novel class of protective agents against UV-induced skin cancers and their addition to the popular cancer preventive agents could provide a better protective effect.

References
1.
Schwarz T. Mechanisms of UV-induced immunosuppression. Keio J Med 2005;54:165-71.
[Google Scholar]
2.
Feldman SR, Liguori A, Kucenic M, Rapp SR, Fleischer AB Jr, Lang W, et al. Ultraviolet exposure is a reinforcing stimulus in frequent indoor tanners. J Am Acad Dermatol 2004;51:45-51.
[Google Scholar]
3.
Warthan MM, Uchida T, Wagner RF Jr. UV light tanning as a type of substance-related disorder. Arch Dermatol 2005;141:963-6.
[Google Scholar]
4.
Levins PC, Carr DB, Fisher JE, Momtaz K, Parrish JA. Plasma beta-endorphin and beta-lipoprotein response to ultraviolet radiation. Lancet 1983;2:166.
[Google Scholar]
5.
Kaur M, Liguori A, Lang W, Rapp SR, Fleischer AB Jr, Feldman SR. Induction of withdrawal-like symptoms in a small randomized, controlled trial of opioid blockade in frequent tanners. J Am Acad Dermatol 2006;54:709-11.
[Google Scholar]
6.
Stefano GB, Kream R. Endogenous opiates, opioids, and immune function: evolutionary brokerage of defensive behaviors. Semin Cancer Biol 2008;18:190-8.
[Google Scholar]
7.
Roy S, Wang J, Gupta S, Charboneau R, Loh HH, Barke RA. Chronic morphine treatment differentiates T helper cells to Th2 effector cells by modulating transcription factors GATA 3 and T-bet. J Neuroimmunol 2004;147:78-81.
[Google Scholar]

Fulltext Views
103

PDF downloads
31
Show Sections