Generic selectors
Exact matches only
Search in title
Search in content
Filter by Categories
15th National Conference of the IAOMFP, Chennai, 2006
Abstract
Abstracts from current literature
Acne in India: Guidelines for management - IAA Consensus Document
Addendum
Announcement
Art & Psychiatry
Article
Articles
Association Activities
Association Notes
Award Article
Book Review
Brief Report
Case Analysis
Case Letter
Case Letters
Case Notes
Case Report
Case Reports
Clinical and Laboratory Investigations
Clinical Article
Clinical Studies
Clinical Study
Commentary
Conference Oration
Conference Summary
Continuing Medical Education
Correspondence
Corrigendum
Cosmetic Dermatology
Cosmetology
Current Best Evidence
Current View
Derma Quest
Dermato Surgery
Dermatopathology
Dermatosurgery Specials
Dispensing Pearl
Do you know?
Drug Dialogues
e-IJDVL
Editor Speaks
Editorial
Editorial Remarks
Editorial Report
Editorial Report - 2007
Editorial report for 2004-2005
Errata
Erratum
Focus
Fourth All India Conference Programme
From Our Book Shelf
From the Desk of Chief Editor
General
Get Set for Net
Get set for the net
Guest Article
Guest Editorial
History
How I Manage?
IADVL Announcement
IADVL Announcements
IJDVL Awards
IJDVL AWARDS 2015
IJDVL Awards 2018
IJDVL Awards 2019
IJDVL Awards 2020
IJDVL International Awards 2018
Images in Clinical Practice
In Memorium
Inaugural Address
Index
Knowledge From World Contemporaries
Leprosy Section
Letter in Response to Previous Publication
Letter to Editor
Letter to the Editor
Letter to the Editor - Case Letter
Letter to the Editor - Letter in Response to Published Article
LETTER TO THE EDITOR - LETTERS IN RESPONSE TO PUBLISHED ARTICLES
Letter to the Editor - Observation Letter
Letter to the Editor - Study Letter
Letter to the Editor - Therapy Letter
Letter to the Editor: Articles in Response to Previously Published Articles
Letters in Response to Previous Publication
Letters to the Editor
Letters to the Editor - Letter in Response to Previously Published Articles
Letters to the Editor: Case Letters
Letters to the Editor: Letters in Response to Previously Published Articles
Medicolegal Window
Messages
Miscellaneous Letter
Musings
Net Case
Net case report
Net Image
Net Letter
Net Quiz
Net Study
New Preparations
News
News & Views
Obituary
Observation Letter
Observation Letters
Oration
Original Article
ORIGINAL CONTRIBUTION
Original Contributions
Pattern of Skin Diseases
Pearls
Pediatric Dermatology
Pediatric Rounds
Perspective
Presedential Address
Presidential Address
Presidents Remarks
Quiz
Recommendations
Regret
Report
Report of chief editor
Report of Hon : Treasurer IADVL
Report of Hon. General Secretary IADVL
Research Methdology
Research Methodology
Resident page
Resident's Page
Resident’s Page
Residents' Corner
Residents' Corner
Residents' Page
Retraction
Review
Review Article
Review Articles
Revision Corner
Self Assessment Programme
SEMINAR
Seminar: Chronic Arsenicosis in India
Seminar: HIV Infection
Short Communication
Short Communications
Short Report
Special Article
Specialty Interface
Studies
Study Letter
Supplement-Photoprotection
Supplement-Psoriasis
Symposium - Contact Dermatitis
Symposium - Lasers
Symposium - Pediatric Dermatoses
Symposium - Psoriasis
Symposium - Vesicobullous Disorders
SYMPOSIUM - VITILIGO
Symposium Aesthetic Surgery
Symposium Dermatopathology
Symposium-Hair Disorders
Symposium-Nails Part I
Symposium-Nails-Part II
Systematic Reviews and Meta-analysis
Tables
Technology
Therapeutic Guidelines
Therapeutic Guidelines - IADVL
Therapeutics
Therapy
Therapy Letter
View Point
Viewpoint
What’s new in Dermatology

Translate this page into:
[gtranslate]

Continuing Medical Education
2002:68:1;5-9
PMID: 17656857

Chancroid: An update

Arun C Inamadar, Aparna Palit
 Department of Dermatology, Venereology and Leprosy, BLDEA's SBMP Medical College, Bijapur - 586 103, Karnataka, India

Correspondence Address:
Arun C Inamadar
Department of Dermatology, Venereology and Leprosy, BLDEA's SBMP Medical College, Bijapur - 586 103, Karnataka
India
How to cite this article:
Inamadar AC, Palit A. Chancroid: An update. Indian J Dermatol Venereol Leprol 2002;68:5-9
Copyright: (C)2002 Indian Journal of Dermatology, Venereology, and Leprology

Abstract

Chancroid, an important sexually transmissible genital ulcer disease of the developing world, has gained new importance with the onset of HIV era. Though common, it poses diagnostic problem because of the difficulties in demonstrating Haemophilus ducreyi itself or indirect evidence of its presence. In the present discussion, various aspects of this challenging disease along with recent aspects of its pathogenesis, diagnosis and treatment have been focussed.
Keywords: Chancroid, Haemophilus ducreyi, Humanimmunodeficiency Virus (HIV) Sexually transmitted disease (GUD).

Introduction

Chancroid is a sexually transmissible genital ulcerative disease, caused by Haemophilus ducreyi. It is most prevalent in the developing countries of Asia, Africa and Latin America, especially among the people of low socioeconomic strata. In these geographic areas, annual incidence of chancroid may exceed to that of syphilis.[1] Though uncommon, occasional outbreaks of the disease have been reported from the United States and Europe, among the communities with high risk behaviour.

Because of the fact of epidemiological synergy, in the current era of HIV infection and AIDS epidemic, prompt diagnosis and adequate treatment of chancroid as well as other genital ulcerative diseases have gained immense importance.

Clinical issues

Incubation period of chancroid is short, between 3-7 days. Atypical chancroid lesion is characterised by the triad of undermined ulcer edge, purulent dirty gray base and moderate to severe pain. Multiple ulcers are seen in 50% of cases. All the three features are present in less than 50% of the sufferers. Untreated cases of chancroid have been reported to persist for months to years.[2] Painful, inflammatory inguinal lymphadenopathy, mostly unilateral, is seen in about 30-60% cases which may undergo suppuration.

Obviously symptomatic disease, directly related to the ulcer and inguinal lymphadenopathy is common in males. Depending on the site, females may present with atypical symptoms like dysuria, dyspareunia, pain on defaecation, bleeding per rectum or vaginal discharge. Incidence of chancroid seems to be apparently higher in males, which may be attributed to the facts like,[1]

  • Easily visible anatomy of male external genitalia.
  • Asymptomatic vaginal or cervical ulcers in females.
  • Less common occurrence of lymphadenitis and bubo formation in females.
  • Spontaneous healing of lesions resulting from autoinoculation in dry areas (inner thighs), which are common in females.

Variations to the classical clinical presentation of chancroid are seen[3] like, transient, popular, dwarf, follicular varieties and those forming giat, serpiginous and phagadenic ulcers.

Clinical presentation of chancroid may simulate other STD.s[1] like donovanosis or condylomata Iota (exuberant granulomatous lesion), herpes genitalis (superficial cluster of lesions) or gonorrhoea (endourethral lesion).

Mild constitutional features may be seen during acute illness but systemic spread of the organism never occurs. Extragenital lesions, though rare, result from autoinoculation. Breast, thighs, fingers, anal canal and oral cavity are the sites involved. Anal ulcers in women result from drainage or autoinoculation and not necessarily due to anal intercourse.[1]

Cicatrix formation and phimosis may be a late complication of chancroid requiring circumcision.

Pathogenesis

The fact that H. ducreyi is a strict human pathogen, makes understanding of basic pathogenic mechanism of chancroid a challenging issue.

The potential virulence factors produced by H. ducreyi include[4],[5] fine tangled pill, lipooligosaccharide (Los), haemoglobin binding outer membrane protein (OMP), cell associated hemolysin, soluble cytolethal distending toxin (Hd -CDT) and cu-zu superoxide dismutase (Cu-Zw SOD). Exact mechanism of action of these factors is unknown. The pill help in adherence to the host cell. Hemolysin acts on RBCs, human foreskin fibroblasts and immune system cells relevant to chancroid lesion like, macrophages, T cells and B cells. The influx of these inflammatory cells is partly responsible for the tissue destruction characteristic of chancroid. Host immune system avoidance by H. ducreyi in chancroidal ulcers are provided by both hemolysin and Cu-Zn SOD.[7] CDT causes host cell cycle arrest at G-2 phase and hamper specific host response, contributing to the persistence of chancroid ulcer.[8],[9] OMP DSrA facilitates the ability of H. ducreyi to progress to pustular stage.[10]

The histopathology of infected site resembles a DTH response.[11] In in-vitro models of infection[12] H. ducreyi increases the reaction of pro-inflammatory cytokines IL-6 and IL-8.[12],[13] IL-8, a potent neutrophil chemoattractant, is responsible for local accumulation of neutrophils,[12],[13] hallmark of chancroid ulcer. Both IL-6 and IL-8 also produce keratinocyte proliferation in the tissue surrounding ulcer giving rise to acanthosis,[12] IL-6 also induces IL-2 receptor expression in T- cells, giving rise to TH1 type of CD4 T cells response. This is proved by the fact that there is increased urinary excretion of soluble IL-2 receptors in chancroid patients.[12]

Diagnostic issues

According to CDC guidelines,[14] definitive diagnosis of chancroid requires identification of H. ducreyi on special culture media. Probable diagnosis for both clinical and surveillance purposes requires fulfilling the criteria,

a) Patient has one or more painful genital ulcers.

b) Syphilis and HSV infection excluded by appropriate laboratory tests.

Suggestive diagnosis can be made in presence of the pathognomonic features of chancroid, i.e., a combination of painful ulcers and tender regional lymphadenopathy.

Isolation and identification of H. ducreyi

1. Culture methods:[15] Most widely used media for culture of H. ducreyi are enriched gonococcal agar and enriched Mueller - Hinton chocolate agar. Sensitivity of the culture method is < 80%.

Non- culture detection methods:

1. Direct microscopy:[15] Typical appearance of the organism is detected by Gram stained smears of clinical specimen. Sensitivity is < 50% even in culture positive cases. False positive diagnosis is also frequent.

2. DNA amplification techniques:[16]

PCR-to amplify H. ducreyi 16s RNA gene. It is less sensitive in clinical specimens due to presence of Taq polymerase inhibitors. Multiplex PCR -(M-PCR) - Simultaneous DNA amplification of H. ducreyi, T. pallidum and HSV 1 and 2 are possible. It is more sensitive than other standard diagnostic tests.

3. Antigen detection assays (Immunofluorescence)[5],[16]

  • Detection of monoclonal antibody (MAb) against 29 KDa outer membrane protein (OMP) of H. ducreyi. Positive in both culture+ve (>90%) and culture negative cases. It is a simple, rapid and sensitive method but may not be available in resource poor countries.
  • Indirect IF, using MAb against lipooligosaccharide (LOS) of H. ducreyi was assessed by Ahmed et al[1],[2],[3],[4],[5],[6] and was found to be superior to bacterial culture. It is a good method to be used in population with high chancroid prevalence.

4. Nucleic acid probe techniques:[15],[16]

DNA- DNA hybridisation techniques using labelled H. ducreyi derived probes.

Usefulness of this method in clinical specimens has not been assessed widely.

5. Serological methods:[15],[16]

  • Enzyme immuno assays (EIA): Using ultrasonicated whole cell antigen, purified LOS or OMP H. ducreyi as antigen.
  • DOT Immunoblot
  • Agglutination
  • Compliment fixation test

Cross reacting antibodies to other haemophilus species complicates the interpretation of serological testing.

6. Mass spectrometric method (MALDI/TOFMS)[16]

It identifies H. ducreyi in short time (10 minutes). It is also helpful to detect the strain differences of the organism.

7. Tissue biopsy[10]

Though not diagnostic, characteristic histopathological findings are seen, it may be helpful in diagnosing non healing or atypical ulcers.

To summarise, till date, culture using specialised media is the most practised method for diagnosis of infection with H. ducreyi. It has the added advantage that antimicrobial sensitivity of the organism can be tested at the same time.[16] PCR is a superior method than other available means of diagnosis. M- PCR is very useful in rapid diagnosis of difficult genital ulcer disease syndrome. However, in the study conducted by Risbud et al[17] in diagnosis of GUD, M -PCR was not found to be superior to the clinical diagnosis alone or in combination with basic laboratory tests. Serology has limited usefulness in routine diagnosis of H. ducreyi infection, but it is helpful in epidemiological studies as a screening method for past infection.[16]

Chancroid and HIV synergy

Like other GUD, chancroidal ulcer is a major risk factor for heterosexual spread of HIV. Moreover, factors like lack of circumcision, prostitution, drug abuse (crack cocaine, alcohol) seem to be independent risk factors for transmission of both the diseases.[2],[3] Different retrospective seroprevalence surveys[18] have identified increased seroconversion rate in presence of H.ducreyi infection and it increases with number of previous ulcer episodes in a dose response relationship.[2]

The explanations for the enhanced HIV transmission in patients with chancroid ulcer may be due to the facts′ like,

  • Genital ulcers act as both portals of entry and exit for (HIV can be detected on ulcer surface).

From the relatively few studies available[19] it is evident that, there are only minor research on such agents may cause an impact to cut down the incidence of multiple STDs in a patient as well as heterosexual transmission of HIV.

Molecular techniques can detect the presence of H. ducreyi DNA in clinical specimen. M-PCR[26] and nested single tube PCR techniques[27] have been shown to be more sensitive than standard methods. This can be extremely useful in designing locally appropriate syndromic management algorithm for genital ulcer.

Molecular techniques have also provided a better understanding to the pathogenesis of STDs. Such knowledge serves as an important basis for rational vaccine design and development.[23] Unless progress is made in developing models to study the pathogenesis of H. ducreyi infection, it is not likely that an effective vaccine against H. ducreyi will be developed in the near future.

References
1.
Ballard R, Morse S. Chancroid. In: Atlas of Sexually Transmitted Diseases and AIDS. Eds. Morse SA, Moreland AA, Holmes KK. Mosby Wolfe Barcelona 1996;48-63.
[Google Scholar]
2.
Ronald AR, Albritton W. Chancroid and Haemophilus ducreyi. In: Sexually Transmitted Diseases. Eds. Holmes KK, Sparling A, March PA et al. Mc Grow Hill USA 1999;515-523.
[Google Scholar]
3.
Brown TJ, Yen - Moore A, Tyring SK. An overview of sexually transmitted diseases. Part I. J Am Acad Dermatol 1999;41:511-529.
[Google Scholar]
4.
Lewis DA, Tait JK, Lumbley SR, et al. Identification of the Znu-A encoded periplasmic zinc transport protein of Haemophilus ducreyi. Infect Immun 1999; 67: 5060 - 5060.
[Google Scholar]
5.
Ward KC, Lumbley SR, Latimer JL, et al. Haemophilus ducreyi, secretes a haemagglutinin like protein. Bacteria 1998;180: 6013-6022.
[Google Scholar]
6.
Wood GE, Dutro SM, Totten PA. Target cell range of Haemophilus ducreyi. hemolysin and its involvement in invasion of human epithelial cells. Infect Immun 1999;67: 3740-3749.
[Google Scholar]
7.
San Mateo LR, Hobbs MM, Kawula TH. Periplasmic copper-zinc superoxide dismutase protects Haemophilus ducreyi. from exogenous superoxide. Mol Microbial 1998;27:391-404.
[Google Scholar]
8.
Lewis DA, Stevens MK, Latimer JL, et al. Characterisation of Haemophilus ducreyi. cdt A, cdt B and cdt C mutants in in-vitro and in-vivo systems. Infect Immun 2001;69:5626-5634.
[Google Scholar]
9.
Bratti XC, Olarte EC, Lagergard T, et al. The cytolethal distending toxin from the chancroid becterium Haemophilus ducreyi. induces cell- cycle arrest in the G2 phase. J Clin Invest 1999; 103: 109-115.
[Google Scholar]
10.
Bong CT, Throm RE, Fortney KR, et al. Dsr A- deficient mutant of Haemophilus ducreyi. is impaired in its ability to infect human volunteers. Infect Immun 2001;69:1488-1491.
[Google Scholar]
11.
Gelfanova V Humphreys TL, Spinola SM. Characterisation of Haemophilus ducreyi. specific T cell lines from lesions of experimentally infected human subjects. Infect Immun 2001; 69:4224 -4231.
[Google Scholar]
12.
Hobbs MM, Paul TR, Wyrick PB, et al. Hoemophilus ducreyi. infection causes basal keratinocyte cytotoxicity and elicits a unique cytokine induction pattern in an in vitro human skin model. Infect Immun 1998; 66:2914 - 2921.
[Google Scholar]
13.
Zaretzky FR, Kawula TH. Examination of early interactions between Hoemophilus ducreyi. and host cells by using cocultured Ha CaT keratinocytes and foreskin fibroblasts. Infect Immun 1999; 67:5352-5360.
[Google Scholar]
14.
Centres for Disease Control and Prevention. 1998 guidelines for the treatment of sexually transmitted diseases. MMWR 1998;47(RR-1); 1-118.
[Google Scholar]
15.
Dyck EV. Meheus AZ, Piot P Chancroid. In: Laboratory Diagnosis of Sexually Transmitted Disease. World Health Organisation, Geneva 1999;57-66.
[Google Scholar]
16.
Lewis DA. Diagnostic tests for chancroid. Sex Transm Inf 2000; 76: 137- 141.
[Google Scholar]
17.
Risbud A, Chan Tack A, Gadkari D, et al. The etiology of genital ulcer disease by multiplex polymerise chain reaction and relationship to HIV infection among patients attending sexually transmitted disease clinics in Pune,Indian J. Sex Trans Dis 1999; 26: 55 -62.
[Google Scholar]
18.
Moss GB, Kreiss JK. The Interrelationship between Human Immunodeficiency Virus infection and other sexually transmitted diseases. Medical Clinics of North America 1990; 74: 1647 - 1659.
[Google Scholar]
19.
Czelusta A, Yen- Moore A, Straten MV, et al. An overview of sexually transmitted diseases. Part III. Sexually transmitted diseases in HIV infected patients. J Am Acad Dermatol 2000;43:409-432.
[Google Scholar]
20.
Donders GGG.Treatment of Sexually transmitted bacterial diseases in pregnant women. Drugs 2000;59: 477- 485.
[Google Scholar]
21.
D' Souza P, Pandhi RK, Khanna N, et al. A comparative study of therapeutic response of patients with clinical chancroid to ciprofloxacin, erythromycin and cotrimoxazole. Sex Transm Dis 1998; 25:293- 295.
[Google Scholar]
22.
Schmid GP. Treatment of chancroid, 1997. Clin Infect Dis 1999;28 suppl 1:s 14 - 20.
[Google Scholar]
23.
Tyndal M, Malisa M, Plummer FA, et al. Ceftriaxone no longer predictably cures chancroid in Kenya. J Infect Dis 1993;167:469-471.
[Google Scholar]
24.
Tyndall M, Agoki E, Plummer FA, et al. Single doses azithromycin for the treatment of choncroid: a randomized comparison with erythromycin. Sex Transm Dis 1994;21:231-234.
[Google Scholar]
25.
Fortney K. Totten PA, Lehrer PI, et al. Haemophilus ducreyi is susceptible to Protegrin. Antimicrobial agents and Chemotherapy 1998; 42: 2690-2693.
[Google Scholar]
26.
Oral KA, Gates CA, Martin DH, et al. Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum and HSV 1 & 2 from genital ulcers. J Clin Microbial 1996;34: 49- 54.
[Google Scholar]
27.
Hawker S, West B, Wilson S, et al. Asymptomatic carriage to Hoemophilus ducreyi confirmed by the polymerase chain reaction Genitourin Med 1995;71:224-227.
[Google Scholar]
Show Sections