Generic selectors
Exact matches only
Search in title
Search in content
Search in posts
Search in pages
Filter by Categories
15th National Conference of the IAOMFP, Chennai, 2006
Abstract
Abstracts from current literature
Acne in India: Guidelines for management - IAA Consensus Document
Addendum
Announcement
Art & Psychiatry
Article
Articles
Association Activities
Association Notes
Award Article
Book Review
Brief Report
Case Analysis
Case Letter
Case Letters
Case Notes
Case Report
Case Reports
Clinical and Laboratory Investigations
Clinical Article
Clinical Studies
Clinical Study
Commentary
Conference Oration
Conference Summary
Continuing Medical Education
Correspondence
Corrigendum
Cosmetic Dermatology
Cosmetology
Current Best Evidence
Current View
Derma Quest
Dermato Surgery
Dermatopathology
Dermatosurgery Specials
Dispensing Pearl
Do you know?
Drug Dialogues
e-IJDVL
Editor Speaks
Editorial
Editorial Remarks
Editorial Report
Editorial Report - 2007
Editorial report for 2004-2005
Errata
Erratum
Focus
Fourth All India Conference Programme
From Our Book Shelf
From the Desk of Chief Editor
General
Get Set for Net
Get set for the net
Guest Article
Guest Editorial
History
How I Manage?
IADVL Announcement
IADVL Announcements
IJDVL Awards
IJDVL AWARDS 2015
IJDVL Awards 2018
IJDVL Awards 2019
IJDVL Awards 2020
IJDVL International Awards 2018
Images in Clinical Practice
In Memorium
Inaugural Address
Index
Knowledge From World Contemporaries
Leprosy Section
Letter in Response to Previous Publication
Letter to Editor
Letter to the Editor
Letter to the Editor - Case Letter
Letter to the Editor - Letter in Response to Published Article
LETTER TO THE EDITOR - LETTERS IN RESPONSE TO PUBLISHED ARTICLES
Letter to the Editor - Observation Letter
Letter to the Editor - Study Letter
Letter to the Editor - Therapy Letter
Letter to the Editor: Articles in Response to Previously Published Articles
Letters in Response to Previous Publication
Letters to the Editor
Letters to the Editor - Letter in Response to Previously Published Articles
Letters to the Editor: Case Letters
Letters to the Editor: Letters in Response to Previously Published Articles
Medicolegal Window
Messages
Miscellaneous Letter
Musings
Net Case
Net case report
Net Image
Net Letter
Net Quiz
Net Study
New Preparations
News
News & Views
Obituary
Observation Letter
Observation Letters
Oration
Original Article
ORIGINAL CONTRIBUTION
Original Contributions
Pattern of Skin Diseases
Pearls
Pediatric Dermatology
Pediatric Rounds
Perspective
Presedential Address
Presidential Address
Presidents Remarks
Quiz
Recommendations
Regret
Report
Report of chief editor
Report of Hon : Treasurer IADVL
Report of Hon. General Secretary IADVL
Research Methdology
Research Methodology
Resident page
Resident's Page
Resident’s Page
Residents' Corner
Residents' Corner
Residents' Page
Retraction
Review
Review Article
Review Articles
Revision Corner
Self Assessment Programme
SEMINAR
Seminar: Chronic Arsenicosis in India
Seminar: HIV Infection
Short Communication
Short Communications
Short Report
Special Article
Specialty Interface
Studies
Study Letter
Supplement-Photoprotection
Supplement-Psoriasis
Symposium - Contact Dermatitis
Symposium - Lasers
Symposium - Pediatric Dermatoses
Symposium - Psoriasis
Symposium - Vesicobullous Disorders
SYMPOSIUM - VITILIGO
Symposium Aesthetic Surgery
Symposium Dermatopathology
Symposium-Hair Disorders
Symposium-Nails Part I
Symposium-Nails-Part II
Tables
Technology
Therapeutic Guidelines
Therapeutic Guidelines - IADVL
Therapeutics
Therapy
Therapy Letter
View Point
Viewpoint
What’s new in Dermatology
View/Download PDF
Letters to the Editor - Letter in Response to Previously Published Articles
2018:84:4;443-444
doi: 10.4103/ijdvl.IJDVL_306_18
PMID: 29893302

Response to ‘Elimination of leprosy in India: An analysis’

Bhushan Kumar
 Former Professor and Head, Department of Skin, STD and Leprosy, PGIMER, Chandigarh, India

Correspondence Address:
Bhushan Kumar
H. No. 81, Sector 16, Chandigarh - 160 015
India
Published: 12-Jun-2018
How to cite this article:
Kumar B. Response to ‘Elimination of leprosy in India: An analysis’. Indian J Dermatol Venereol Leprol 2018;84:443-444
Copyright: (C)2018 Indian Journal of Dermatology, Venereology, and Leprology

Sir,

I read an interesting review article by U Sengupta on elimination of leprosy in India.[1] Of all the issues discussed by the author, the one supporting and even recommending single-dose rifampicin for prevention and controlling leprosy is not supported by scientific facts available currently.

Single-dose rifampicin treatment is being offered to household contacts of new leprosy patients by the National Leprosy Eradication Program of India in most endemic districts of the country from November 2017. It is a matter of concern because this is not an effective method for preventing multibacillary leprosy and does not protect immediate household contacts for a reasonable period of time. There are serious ethical problems about identifying contacts of patients with leprosy. It is not cost-effective for household contacts, and the possibility with the widespread use of single-dose rifampicin promoting the development of rifampicin resistance genes in M. leprae is real. The author himself has commented on this real possibility.

Taking note of the implementation of single-dose rifampicin by the National Leprosy Control Program of India – me and other colleagues submitted our views in the form of a letter which has been accepted in the PLoS Neglected Tropical Diseases and will be published soon.[2] Given below is the summary of the letter.

The basis of recommendation of single-dose rifampicin is the COLEP trial from Bangladesh.[3] In this study, 21,711 contacts of newly diagnosed leprosy patients were randomized to receive single-dose rifampicin or placebo. In the second follow-up after 3 and 4 years, it was found that the household contacts who took single-dose rifampicin did not have significant protection against developing leprosy [odds ratio 0.46 (0.15–1.38); P = 0.1652]. It only protected neighbors of neighbors odds ratio 0.24 (0.11–0.52) against the development of leprosy. Single-dose rifampicin did not protect against the development of multibacillary leprosy [0.52 (0.22–1/19); P = 0.1201]; however, it did protect against the development of paucibacillary leprosy [0.38 (0.16–0.87) P = 0.0218] and single lesion leprosy [0.42 (0.20–0.89)].[4] Significant protection of 56% only lasted 2 years. These findings suggest that single-dose rifampicin treatment is only effective when patients have a low mycobacterial load, hence, the protection is only against the development of paucibacillary leprosy. Because single-dose rifampicin does not significantly reduce the number of patients with multibacillary leprosy, it is unlikely to have an effect on the transmission because these are the patients that need to be diagnosed and treated at the earliest. Moreover, one cannot assume that the index case is the only source of infection to contacts in high endemic settings when there is a possibility of exposure to M. leprae from multiple sources outside the home. We know that a history of contact in the family is present in only one-third of the leprosy patients.

Single-dose rifampicin is being promoted because it is an easier intervention and any intervention that requires more than one dose of the drug/vaccine would be very challenging to administer. More importantly, previous studies on leprosy chemotherapy have found that killing M. leprae often requires multiple doses of an active agent over several months. In the nude mouse model, up to 20 doses of rifampicin 10 mg/kg were required to significantly decrease levels of M. leprae mRNA in experimental leprosy, which again suggests that multiple doses of rifampicin will be needed if this intervention is to be effective.[5]

The important major benefit of giving single-dose rifampicin is that household contacts of leprosy patients will be examined. We know that these people are at the highest risk of developing leprosy, making this is a good public health intervention. However, the ethical problems of identifying and examining all household contacts requiring consent of the leprosy patient need to be explored carefully. There is a risk that hasty implementation of this intervention could increase stigmatization by identifying patients with leprosy. There are also ethical problems in telling people that they will be protected against the development of leprosy, but in reality, it would protect them only from some types of leprosy and that too only for 2 years.

The intervention is least cost-effective for household contacts. The Bangladesh study (from 2002 to 2007) found that the cost of prevention of one case of leprosy was US$ 158 and the preventive therapy was most effective in neighbors of neighbors, social contacts and household contacts in that order.[6] A multicentric, double-blind, randomized and placebo controlled study in over 7500 household contacts in India reported that to prevent occurrence of one case of leprosy, 1556 persons need to be treated.[7] This number would rise further as the prevalence of leprosy goes down.

A recently published study from India found a delay in disease detection and institution of treatment long enough for children with leprosy to develop grade-2 deformity in significant numbers.[8] So, it would be better to invest economically and effortwise in improving early case detection and institution of treatment.

Another aspect that has not been satisfactorily addressed is the practical implications of giving single-dose rifampicin to people who also have concurrent infections, which may be either latent or fully manifest. This aspect has been discussed by an expert panel but there was no data support in the report.[9] The report did not make any clear recommendations as to how concurrent tuberculosis infections should be managed. Effectively screening large number of patients for tuberculosis infection is challenging in every setting.

Development of rifampicin drug resistance in M. leprae may be a consequence of giving single-dose rifampicin to thousands of persons. In 1982, World Health Organization recommended multidrug therapy to prevent the emergence of rifampicin resistance. The almost absence of rifampicin resistance in M. leprae is something that the leprosy world is very fortunate with. This might be threatened by the widespread use of single-dose rifampicin as chemoprophylaxis. Unfortunately, this fear has come true. Recently, the genes coding for rifampicin resistance in M. leprae DNA have been isolated from biopsies taken from leprosy patients – both new and relapsed, from several countries including India and Brazil, the two countries with maximum number of leprosy cases in the world.[10] If this occurs on a wider scale, the global leprosy program will be severely jeopardized.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References
1.
Sengupta U. Elimination of leprosy in India: An analysis. Indian J Dermatol Venereol Leprol 2018;84:131-6.
[Google Scholar]
2.
Lockwood D, Krishnamurthy P, Kumar B, Penna G. Single dose rifampicin chemoprophylaxis, protects those who need it least and is not a cost effective intervention. PLoS Negl Trop Dis (forthcoming) PNTD-D-18-00160 (EMID: 6241dd72a07cdd4e).
[Google Scholar]
3.
Moet FJ, Pahan D, Oskam L, Richardus JH; COLEP Study Group. Effectiveness of single dose rifampicin in preventing leprosy in close contacts of patients with newly diagnosed leprosy: Cluster randomised controlled trial. BMJ 2008;336:761-4.
[Google Scholar]
4.
Moet FJ, Oskam L, Faber R, Pahan D, Richardus JH. A study on transmission and a trial of chemoprophylaxis in contacts of leprosy patients: Design, methodology and recruitment findings of COLEP. Lepr Rev 2004;75:376-88.
[Google Scholar]
5.
Davis GL, Ray NA, Lahiri R, Gillis TP, Krahenbuhl JL, Williams DL, et al. Molecular assays for determining Mycobacterium leprae viability in tissues of experimentally infected mice. PLoS Negl Trop Dis 2013;7:e2404.
[Google Scholar]
6.
Idema WJ, Majer IM, Pahan D, Oskam L, Polinder S, Richardus JH, et al. Cost-effectiveness of a chemoprophylactic intervention with single dose rifampicin in contacts of new leprosy patients. PLoS Negl Trop Dis 2010;4:e874.
[Google Scholar]
7.
Oskam L, Mi B. Report of the workshop on the use of chemoprophylaxis in the control of leprosy held in Amsterdam, the Netherlands on 14 December 2006. Lepr Rev 2007;78:173-85.
[Google Scholar]
8.
Darlong J, Govindharaj P, Darlong F, Mahato N. A study of untreated leprosy affected children reporting with Grade 2 disability at a referral centre in West Bengal, India. Leprosy Rev 2017;88:298-305.
[Google Scholar]
9.
Mieras L, Anthony R, van Brakel W, Bratschi MW, van den Broek J, Cambau E, et al. Negligible risk of inducing resistance in Mycobacterium tuberculosis with single-dose rifampicin as post-exposure prophylaxis for leprosy. Infect Dis Poverty 2016;5:46.
[Google Scholar]
10.
Cambau E, Saunderson P, Matsuoka M, Cole ST, Kai M, Suffys P, et al. Antimicrobial resistance in leprosy: Results of the first prospective open survey conducted by a WHO surveillance network for the period 2009-15. Clin Microbiol Infect 2018. pii: S1198-743X(18)30197-6.
[Google Scholar]

Fulltext Views
361

PDF downloads
73
Show Sections